Introduction

On April 30, 2021, the North Dakota Department of Environmental Quality (Department) received a permit application for a new permit for Minn-Dak Farmers Cooperative’s (Minn-Dak) surface impoundments.

Minn-Dak currently owns and operates surface impoundments, currently regulated under Permit 0150, on approximately 112 acres located in Section 20, Township 133 North, Range 47 West in Richland County, ND. At the Department’s request, Minn-Dak is proposing to separate the surface impoundments from Permit 0150 and establish the surface impoundments under a separate permit. There will be separate permit application review memos for the coal ash storage pile, temporary storage area, piling grounds, and inert waste landfill, and the mud solids management area. Permit 0150 will include the coal ash storage pile, inert waste landfill, temporary storage area, and piling grounds. The mud solids management area and surface impoundments will each be covered under a new permit. This review is only covering the facility’s surface impoundments. The surface impoundments will include Pond Nos. 1, 2, 3, 4, 5 6A, 6B, Shed Pond, Freshwater Reservoir, and the Mud Solids Management Area Holding Pond (formerly called the Mud Solids Management Area Stormwater Pond). The facility was first permitted in 1994.
Design

Pond 1 has a 12-inch compacted clay liner on the pond bottom, and it accepts stormwater from the inert waste landfill (Permit 0150). The pond is approximately 8 acres and has a storage capacity of 25 million gallons with a 3-foot freeboard.

Pond 2 has a 12-inch compacted clay liner and it accepts condensate from Minn-Dak and the Yeast Plant. The pond is approximately 8 acres and has a storage capacity of 25 million gallons with a 3-foot freeboard.

Pond 3 has a 2-foot compacted clay liner overlain by an 80-mil high density polyethylene (HDPE) liner, and it accepts process wastewater. Pond 3 was reconstructed as a lined and covered low-rate anaerobic system (LRAS) in 2020. The Pond 3 cover was completed in 2021. Quality Assurance/Construction Documentation Reports were submitted to the Department for the reconstruction and pond cover system. The pond is approximately 8 acres and has a storage capacity of 38 million gallons with a 3-foot freeboard.

Pond 4 is operated as two cells, 4A and 4B. Pond 4A has a two-foot compacted clay liner overlain by a 60-mil HDPE liner and Pond 4B has a 2-foot compacted clay liner overlain by a 120-mil HDPE liner. Both Pond 4A and 4B accept process wastewater. Pond 4 is approximately 8 acres and has a storage capacity of 40 million gallons with a 3-foot freeboard.

Pond 5 has a 60-mil HDPE liner and accepts overflow from Pond 6A. The pond is approximately 9.5 acres and has a storage capacity of 26 million gallons with a 3-foot freeboard.

Pond 6A has an 80-mil HDPE liner and accepts boiler house scrubber water and lime kiln scrubber water. The pond is approximately 1.5 acres and has a storage capacity of 5 million gallons with a 3-foot freeboard.

Pond 6B is currently inactive, however, it will be included as a surface impoundment in the permit in the event that Minn-Dak decides to make it active again. It is a former ash pond that was originally developed in the 1970s. The pond was removed from service in 1989 and continues to be inactive. The pond is approximately 1.5 acres. It is recommended that a permit condition be added requiring Minn-Dak to notify the Department prior to using the pond again and that the facility will have to demonstrate to the Department by submitting documentation, for review and approval, showing that Pond 6B meets the requirements in NDAC Subsection 33.1-20-08.1-01(2) and NDAC Subdivision 33.1-20-08.1-01(3)(b).

The freshwater reservoir is located in an area with clay and/or till. Historical boring logs show that there is either fill, native clay or till for the upper 10 feet and then clay or till to a depth of at least 17 feet. The freshwater reservoir is approximately 47 acres and has a storage capacity of 230 million gallons with a two-foot freeboard.

The shed pond is located in an area with clay or till. Historical water well boring logs show that the area around the shed pond has clay or till to a depth of at least 14 feet. The pond is approximately 7 acres and has a storage capacity of 8 million gallons with a two-foot freeboard.

In the mud solids management area, there is a pond that was formerly called the mud solids stormwater pond. It is now the mud solids management area holding pond. It is an incised pond that was constructed in 2002 and has an 18-inch-thick compacted clay layer. Five thinwall samples were collected from the mud solids management area and were tested for permeability.
with a range from 2.2×10^{-8} cm/sec to 5.0×10^{-8} cm/sec. While these samples were not from the pond itself, the same clay source was used and it was constructed at the same time as the clay layer for the mud solids management area was being constructed. A Quality Assurance/Construction Report was submitted for the Phase I construction of the mud solids management area in 2002 and included the pond. When the pond was expanded during the Phase II construction of the mud solids management area in 2005 – 2006, six samples were collected from the mud solids management area and were tested for permeability with a range from 3.8×10^{-8} cm/sec to 8.7×10^{-8} cm/sec. While these samples were not from the pond itself, the same clay source was used and it was constructed at the same time as the clay layer for the mud solids management area was being constructed. A Quality Assurance/Construction Report was submitted for the Phase II construction of the mud solids management area in 2006 and included the pond. The pond is located in an area with at least a 14-foot natural clay sediment layer and as part of a hydrogeological investigation, four samples were tested for permeability with a range from 1.7×10^{-8} cm/sec to 3.5×10^{-7} cm/sec. The pond is approximately 13.5 acres and has a storage capacity of 16 million gallons with a two-foot freeboard.

The eastern stormwater ponds primarily receive flow from the northern and southern portions of the plant area including the parking lot, loader garage, AG garage, factory garage, coal ash storage pile, piling grounds 1 – 4, coal storage, limerock storage, coke storage and the substation. Minn-Dak is proposing to use these ponds solely for stormwater moving forward and is implementing engineering controls to ensure non-stormwater is not directed to the ponds in the future. See the Operation section of this memo for additional information.

Operation

Pond 1 accepts stormwater from the inert waste landfill and it is discharged to the discharge reservoir or the freshwater reservoir.

Pond 2 accepts condensate from Minn-Dak and the Yeast Plant. It is reused in the process and eventually discharges to the freshwater reservoir.

Pond 3 accepts process wastewater and the water then goes through the wastewater treatment system or to Pond 4.

Pond 4 accepts process wastewater and the water then goes through the wastewater treatment system or to Pond 3.

Pond 5 accepts overflow from Pond 6A and the water goes to the wash house before going to either Pond 3 or Pond 4.

Pond 6A accepts boiler house scrubber water and lime kiln scrubber water. The water then overflows into Pond 5.

Freshwater reservoir accepts process wastewater in the form of condensate from the Yeast Plant and Minn-Dak, the struck shop wash drain, and the factory sewer. In addition, it accepts wastewater and stormwater from Pond 1, Pond 2, and the Shed Pond, and treated wastewater from the north and south clarifiers. The water is either reused in the process, treated directly in the wastewater treatment plant, or diverted to the discharge reservoir.

The shed pond receives runoff from the shed buildings and piling grounds that is pumped and discharged through the facility's water treatment system. It is important to note that even the
facility states that the pond accepts stormwater, it is a surface impoundment as it accepts water that has been in contact with harvest waste - Tare 1 (Factory), discarded sugar beets, pressed mud and pulp, rocks and trash, and piling grounds cleanup waste from the piling grounds.

The mud solids management area holding pond takes flows from stormwater from various watershed areas including the mud solids management area, coal storage area within the railroad spur loop, fields to the east of the pond that are north of the yeast plant and the surrounding agricultural fields. From the pond, the water is piped and pumped to wastewater Pond 3 or 4 and treated through the facility's water treatment system. Flow from the pond may also be diverted to the discharge reservoir and/or freshwater reservoir depending on water quality. It is important to note that even though the facility formerly called it a stormwater pond and it accepts stormwater, it is a surface impoundment as it also accepts water that has been in contact with mud solids and the coal storage area.

The eastern stormwater ponds primarily receive flow from the northern and southern portions of the plant area including the parking lot, loader garage, AG garage, factory garage, coal ash storage pile, piling grounds 1 – 4, coal storage, limerock storage, coke storage and the substation. In the past, the runoff from those areas flowed to the northeast corner of the plant site where it flowed via a culvert underneath 182nd Ave. SE to a pump station that would pump the water to the eastern stormwater ponds. The water from the eastern stormwater ponds would then be pumped to the wastewater ponds and discharged through the facility's water treatment system. Non-stormwater has been directed to these ponds in the past due to upset conditions in the plant. Minn-Dak is proposing to use these ponds solely for stormwater moving forward and is implementing engineering controls to ensure non-stormwater is not directed to the ponds in the future. Minn-Dak will regrade and/or install a berm along the south and east sides of the mud clarifier and MDS cooling tower area to ensure the flow is directed to Factory Ditch #1 and cannot overflow into the county road ditch. They will also construct a swale, berm or curb to ensure that juice from the overhead door of the main factory by the storeroom and the MDS sump pit cannot flow into the stormwater ditch. Permanent dam or gate will replace the temporary sandbag containment. There are two 12-inch diameter pipes located in the northeast corner of the site that are plumbed to bypass the gate valve. Minn-Dak will ensure that they can no longer bypass the gate valve. Based on the proposed improvements and the description of what will go to the eastern stormwater ponds, these will not be regulated as surface impoundments. If the proposed improvements do not work, the ponds may become regulated in the future if they accept anything other than stormwater.

Closure

The surface impoundments will be clean closed. Upon closure, all standing liquids, waste and waste residues, liners, and any underlying and surrounding contaminated soil will be removed. The site will then be reclaimed by re-grading the site to approximately pre-existing elevations with positive drainage to existing ditches, covering it with 12-inches of topsoil or soils from the mud solids management area and properly revegetating the site as stated in their Solid Waste Management Plan dated March 2022.

Compliance History

The following items of noncompliance have been noted since 2016:

- Multiple odor issues from multiple ponds over multiple years.
- Various fugitive dust and road maintenance issues over the years.
• Pond 3 liner failure in 2018 and 2019.
• Corrective Action Plan in 2019 was to address multiple issues.
• Pipe bursts in early fall of 2020 caused seeps/spills of condensate along the north side slopes of Ponds 1, 5, and 6B.
• During the 3rd quarter 2021 inspection, fly ash sediment from Pond 6A was placed on road while creating a sump/drain area within the Pond 6A.

The above items of noncompliance have been appropriately addressed by the facility.

A Notice of Violation (NOV) was issued to the facility on December 16, 2019. Minn-Dak responded to the NOV on January 20, 2020, and the Department and Minn-Dak signed an Administrative Consent Agreement (ACA) on October 12, 2020.

Solid Waste Management Rules (NDAC Article 33.1-20)

NDAC Section 33.1-20-02.1-05. Record of notice.

A record of notice is not required for surface impoundments that will be clean closed.

NDAC Section 33.1-20-02.1-06. Property rights.

The 2015 Permit Application included plats showing that Minn-Dak owns the property and that the facility has local zoning approval. Also, a search of the Richland County's Tax Information website also lists Minn-Dak as the property owner.

NDAC Section 33.1-20-03.1-01. Preapplication procedures.

A preapplication is not required for surface impoundments that are not closed with waste in place and some of the surface impoundments are currently permitted under Permit 0150.

NDAC Section 33.1-20-03.1-02. Permit application procedures.

NDAC Subsections 33.1-20-03.1-02(1) – (3)

On April 30, 2021, the Department received an application form and supporting documents that were either provided and/or referenced with dates by Minn-Dak. The application packet was prepared by Barr, the applicant's consulting engineer. One of the primary references, the Application for Permit Renewal dated December 21, 2015, was prepared by SEH. A revised permit application was submitted to the Department on March 4, 2022.

NDAC Subsection 33.1-20-03.1-02(4)

A public notice by the facility is not required for a permit renewal and no major modifications are being proposed.

NDAC Subsection 33.1-20-03.1-02(5)

Notification to the North Dakota Public Service Commission is not required as the facility is not proposing to dispose of coal processing wastes in a mining permit area.
Applications for a solid waste management unit or facility permit must include the following information where applicable:

- **A completed application form, subsection 1;**

 On April 30, 2021, the Department received an application form and supporting documents that were either provided and/or referenced with dates by Minn-Dak. The application packet was prepared by Barr, the applicant's consulting engineer. One of the primary references, the Application for Permit Renewal dated December 21, 2015, was prepared by SEH. An application processing fee of $3,000 was included with the permit application. A revised permit application was submitted to the Department on March 4, 2022.

- **A description of the anticipated physical and chemical characteristics, estimated amounts, and sources of solid waste to be accepted, including the demonstration required by North Dakota Century Code section 23.1-08-14;**

 Pond 1 accepts stormwater from the inert waste landfill.

 Pond 2 accepts condensate from Minn-Dak and the Yeast Plant.

 Pond 3 accepts process wastewater.

 Pond 4 accepts process wastewater.

 Pond 5 accepts overflow from Pond 6A.

 Pond 6A accepts boiler house scrubber water and lime kiln scrubber water.

 Freshwater reservoir accepts process wastewater in the form of condensate from the Yeast Plant and Minn-Dak, the struck shop wash drain, and the factory sewer. In addition, it accepts wastewater and stormwater from Pond 1, Pond 2, and the Shed Pond, and treated wastewater from the north and south clarifiers.

 The shed pond receives runoff from the shed buildings and piling grounds that is pumped and discharged through the facility's water treatment system.

 The mud solids management area holding pond takes flows from stormwater from various watershed areas including the mud solids management area, coal storage area within the railroad spur loop, fields to the east of the pond that are north of the yeast plant and the surrounding agricultural fields.

 Additional discussion on each of the above ponds can be found in the Design and Operation sections of this memo.
c. The site characterization of section 33.1-20-13-01 and a demonstration that the site fulfills the location standards of section 33.1-20-04.1-01;

The location of the facility was previously reviewed by the North Dakota State Water Commission, North Dakota Geological Survey and the North Dakota Department of Health’s Division of Water Quality and Division of Waste Management (now the North Dakota Department of Environmental Quality). While the reviews concluded the location may not be the best possible location, the site could be used if waste management facilities and practices were significantly upgraded. Many upgrades have taken place over the last permit period.

According to the Earth Tech report entitled "Mud Solids Management Area," the entire surface of Richland County is covered with Pleistocene glacial drift ranging from 150 to 490 feet thick. Near-surface deposits are predominately silty and sandy clay which were deposited as glacial till or glacial lake sediments. Deeper deposits consist of interbedded sandy clay tills and glacial outwash deposits of sand and gravel. The outwash deposits are designated as local aquifers as described in the following section. Regionally, the glacial drift overlies bedrock of Cretaceous age (Baker, 1967). The surficial deposits encountered during hydrogeologic investigations generally consisted of topsoil/fill and glacial deposits. The glacial deposits occur as discontinuous seams as well as distinctive units that include resedimented till and fine- to coarse-grain sand, all associated with ice-marginal deposition.

The facility meets the location standards and additional information is included in Minn-Dak’s 2015 Permit Application that was received by the Department on December 21, 2015.

d. Soil survey and segregation of suitable plant growth material;

Soils from the mud solids management area or comingled material will provide suitable plant growth material (SPGM) as well as temporary and final closure for solid waste management units. Minn-Dak produces pressed mud solids annually from their belt filter press during sugar beet processing.

e. Demonstrations of capability to fulfill the general facility standards of section 33.1-20-04.1-02;

- **Training**: Training programs and schedule are outlined in the facility’s Solid Waste Management Plan dated March 2022. The facility provides its own internal training as well as attends some Department trainings when available. Documentation is handled on an internal online system which can provide information for the annual reports.

- **Water Protection Provisions**: The facility has been covered by a groundwater monitoring plan and will continue to be covered by the same plan.
• **May not cause discharge of pollutants into waters of the state:** All facility stormwater is recycled through the facility processes and then routed through the wastewater treatment system. However, the May 27, 2021 Minn-Dak letter discussing the eastern stormwater ponds propose to change this. The stormwater that is in the eastern stormwater ponds will not be routed through the wastewater treatment system and will be discharged as stormwater as allowed by the Department’s Division of Water Quality.

• **Ambient Air Quality Standards or Odor Rules:** Odor masking machines have been utilized by the facility to assist with controlling intense odors from the site.

• **Fugitive Dust and Windblown Debris:** Dust and windblown debris control is outlined in Minn-Dak's Solid Waste Management Plan dated March 2022.

• **Open Burning:** Not applicable as the facility is not proposing to burn any wood waste.

• **Permanent Sign:** The facility is not required to have a sign as the site is secured and only for Minn-Dak's use. It is not open to the public.

• **Inspections:** Weekly inspections are outlined in the Solid Waste Management Plan dated March 2022. Inspections following severe weather events are also outlined.

 f. **Facility engineering specifications adequate to demonstrate the capability to fulfill performance, design, and construction criteria provided by this article and enumerated in this subdivision:**

 1) **Transfer stations and drop box facilities, section 33.1-20-04.1-06.**

 The requirements of this section are not applicable as the facility is not proposing a transfer station or a drop box facility.

 2) **Waste piles, section 33.1-20-04.1-07.**

 The requirements of this section are not applicable as the facility is not proposing to manage any waste piles.

 3) **Resource recovery, section 33.1-20-04.1-08.**

 The requirements of this section are not applicable as the facility is not proposing any resource recovery activities.
4) Land treatment, section 33.1-20-04.1-09 and chapter 33.1-20-09.

The requirements of this section are not applicable as the facility is not proposing a land treatment facility.

5) Non-CCR surface impoundments, section 33.1-20-04.1-09 and chapter 33.1-20-08.1.

Pond 1 has a 12-inch compacted clay liner on the pond bottom, and it accepts stormwater from the inert waste landfill (Permit 0150). The pond is approximately 8 acres and has a storage capacity of 25 million gallons with a 3-foot freeboard.

Pond 2 has a 12-inch compacted clay liner and it accepts condensate from Minn-Dak and the Yeast Plant. The pond is approximately 8 acres and has a storage capacity of 25 million gallons with a 3-foot freeboard.

Pond 3 has a 2-foot compacted clay liner overlain by an 80-mil high density polyethylene (HDPE) liner, and it accepts process wastewater. Pond 3 was reconstructed as a lined and covered low-rate anaerobic system (LRAS) in 2020. The Pond 3 cover was completed in 2021. Quality Assurance/Construction Documentation Reports were submitted to the Department for the reconstruction and pond cover system. The pond is approximately 8 acres and has a storage capacity of 38 million gallons with a 3-foot freeboard.

Pond 4 is operated as two cells, 4A and 4B. Pond 4A has a two-foot compacted clay liner overlain by a 60-mil HDPE liner and Pond 4B has a 2-foot compacted clay liner overlain by a 120-mil HDPE liner. Both Pond 4A and 4B accept process wastewater. Pond 4 is approximately 8 acres and has a storage capacity of 40 million gallons with a 3-foot freeboard.

Pond 5 has a 60-mil HDPE liner and accepts overflow from Pond 6A. The pond is approximately 9.5 acres and has a storage capacity of 26 million gallons with a 3-foot freeboard.

Pond 6A has an 80-mil HDPE liner and accepts boiler house scrubber water and lime kiln scrubber water. The pond is approximately 1.5 acres and has a storage capacity of 5 million gallons with a 3-foot freeboard.

The freshwater reservoir is located in an area with clay and/or till. Historical boring logs show that there is either fill, native clay or till for the upper 10 feet and then clay or till to a depth of at least 17 feet. The freshwater reservoir is approximately 47 acres and has a storage capacity of 230 million gallons with a two-foot freeboard.
The shed pond is located in an area with clay or till. Historical water well boring logs show that the area around the shed pond has clay or till to a depth of at least 14 feet. The pond is approximately 7 acres and has a storage capacity of 8 million gallons with a two-foot freeboard.

In the mud solids management area, there is a pond that was formerly called the mud solids stormwater pond. It is now the mud solids management area holding pond. It is an incised pond that was constructed in 2002 and has an 18-inch thick compacted clay layer. Five thinwall samples were collected from the mud solids management area and were tested for permeability with a range from 2.2×10^{-8} cm/sec to 5.0×10^{-9} cm/sec. While these samples were not from the pond itself, the same clay source was used and it was constructed at the same time as the clay layer for the mud solids management area was being constructed. A Quality Assurance/Construction Report was submitted for the Phase I construction of the mud solids management area in 2002 and included the pond. When the pond was expanded during the Phase II construction of the mud solids management area in 2005 – 2006, six samples were collected from the mud solids management area and were tested for permeability with a range from 3.8×10^{-8} cm/sec to 8.7×10^{-9} cm/sec. While these samples were not from the pond itself, the same clay source was used and it was constructed at the same time as the clay layer for the mud solids management area was being constructed. A Quality Assurance/Construction Report was submitted for the Phase II construction of the mud solids management area in 2006 and included the pond. The pond is located in an area with at least a 14-foot natural clay sediment layer and as part of a hydrogeological investigation, four samples were tested for permeability with a range from 1.7×10^{-6} cm/sec to 3.5×10^{-7} cm/sec. The pond is approximately 13.5 acres and has a storage capacity of 16 million gallons with a two-foot freeboard.

Additional information regarding the ponds can be found in the Operation section of this memo.

6) **Any disposal, section 33.1-20-04.1-09.**

The requirements of this section are not applicable as the facility is not proposing any disposal activities.

7) **Inert waste landfill, chapter 33.1-20-05.1.**

The requirements of this section are not applicable as the facility is not proposing an inert waste landfill.
8) Municipal waste landfill, chapter 33.1-20-06.1.

The requirements of this section are not applicable as the facility is not proposing a municipal waste landfill.

9) Industrial waste landfill, chapters 33.1-20-07.1 or 33.1-20-10.

The requirements of this section are not applicable as the facility is not proposing an industrial waste landfill.

10) TENORM waste landfill, chapters 33.1-20-07.1 or 33.1-20-10 and 33.1-20-11

The requirements of this section are not applicable as the facility is not proposing a TENORM waste landfill.

11) Special waste landfill, chapter 33.1-20-07.1;

The requirements of this section are not applicable as the facility is not proposing a special waste landfill.

12) CCR unit, chapter 33.1-20-08;

The requirements of this section are not applicable as the facility is not proposing a CCR unit.

13) Municipal solid waste ash landfills, chapter 33.1-20-10;

The requirements of this section are not applicable as the facility is not proposing a municipal solid waste ash landfill.

14) Regulated infectious waste unit, chapter 33.1-20-12;

The requirements of this section are not applicable as the facility is not proposing a regulated infectious waste unit.

g. The plan of operation of section 33.1-20-04.1-03;

The application included a Solid Waste Management Plan which fulfills the requirements of this section. It includes information on material management including the ponds and sludge from those ponds, training, contingency plans, post-closure plan, recordkeeping and reporting.

h. Demonstration of the treatment technology of section 33.1-20-01.1-12;

The requirements of this section are not applicable as the facility is not proposing to treat waste.
i. The place where the operating record is or will be kept, section 33.1-20-04.1-04;

The operating record is kept on site in the office of Minn-Dak's plant manager.

j. Demonstration of capability to fulfill the groundwater monitoring, sections 33.1-20-08-06 or 33.1-20-13-02;

Based on the geological location of the facility, other solid waste management units covered under Solid Waste Management Permits, previous impacts to the groundwaters of the area from process water spills, and the facility's location within a wellhead protection area, a groundwater monitoring plan was reviewed and approved by the Department.

k. Construction quality assurance and quality control;

The permit application states that construction quality assurance documentation reports will be submitted as necessary for construction and closure projects.

l. Demonstrations of capability to fulfill the closure standards, section 33.1-20.1-04.1-05 and otherwise provided by this article;

The surface impoundments will be clean closed. Upon closure, all standing liquids, waste and waste residues, liners, and any underlying and surrounding contaminated soil will be removed. The site will then be reclaimed by re-grading the site to approximately pre-existing elevations with positive drainage to existing ditches, covering it with 12-inches of topsoil or soils from the mud solids management area and properly revegetating the site as stated in their Solid Waste Management Plan dated March 2022.

Minn-Dak will maintain financial assurance for the clean closure of Pond Nos. 1, 2, 3, 4, 5, 6A, the freshwater reservoir, the shed pond and the mud solids management area holding pond, and the post-closure care period of 5 years. Cost estimates were provided and closure costs are estimated to be $2,347,000. Post-closure care costs are estimated to be $232,000.

m. Demonstrations of capability to fulfill the postclosure standards, section 33.1-20-04.1-09 and otherwise provided by this article; and

Post-closure care is not required for surface impoundments that will be clean closed, however, the facility provided a post-closure care plan as part of their Solid Waste Management Plan dated March 2022. The facility will conduct post-closure care for a period of 5 years to address vegetation establishment.

n. A disclosure statement as required by North Dakota Century Code section 23.1-08-17.

A disclosure statement that meets the requirements of this section was submitted to the Department on April 30, 2021.
Site Specific Conditions

It is recommended that the following conditions from the current Permit 0150 be included in the new permit (they have been renumbered in accordance with the new permit):

G.1. The liquid within Pond 4, and Ponds 5/6A (all others as needed) shall be sampled at the same frequency as for the facility's Groundwater Monitoring Plan. The parameters for analysis shall include all relevant and agreed upon parameters included in "TABLE 1 List of Parameters for Assessing Ground Water Quality NDAC Chapter 33.1-20-13." Other parameters, upon request by the Department, may be required based on materials accepted.

G.2. Any pond that is cleaned/dredged for solids removal will be identified sixty (60) days prior. All material removed will be sampled, in accordance with the Permittee's approved Solid Waste Management Plan and/or approved Nutrient Management Plan, before being placed in any permanent location. The Department will give final approval on final disposal.

It is recommended that the following condition be added based on the permit application review:

G.3. Ninety (90) days prior to restoring Pond 6B for active use, the Permittee shall notify the Department and submit documentation, for review and approval, showing that Pond 6B meets the requirements in NDAC Subsection 33.1-20-08.1-01(2) and NDAC Subdivision 33.1-20-08.1-01(3)(b).

Conclusion

Based on the submitted application and items discussed above, the Minn-Dak Farmers Cooperative has shown that the renewal meets the requirements of the North Dakota Solid Waste Management Rules. It is proposed that the Department grant Minn-Dak Farmers Cooperative a permit with the conditions listed in the draft. The proposed permit length is for a period of 5 years because of the enforcement action related to odors, operational issues with the ponds and the numerous odor complaints received by the Department.

CRH:DAT:AAC:MPM
Attachment