Biological Monitoring in North Dakota

Aaron Larsen Environmental Scientist ND Dept of Health Division of Water Quality

NORTH DAKOTA DEPARTMENT *of* HEALTH

Outline

- What is Biological Monitoring?
- Why States have Biological Monitoring programs
- Field collection methods
- Historical sampling locations
- Results from Red River Valley
- Other projects
- Fish sampling summary across ND

What is Biological Monitoring?

- Scientists take measurements and samples (fish, macroinvertebrates) from stream/river and compare them to a regional 'reference' condition and determines current condition (biological integrity)
 - Biological Integrity areas that support biological communities that are balanced, integrated, adaptive and composed of organisms expected from a regions natural environment
 - What we would expect to find in areas with little/no human influence

Why do State's Biomonitor?

Clean Water Act

- Goal is to restore chemical, physical and biological integrity of Nation's waters
- States required to report on quality of waters
 - Section 305(b) Water Quality Assessment Report
 - Report status of beneficial uses of rivers and streams
 - Summarize impairments and causes
 - Low biological integrity
 - Total suspended solids, etc.

Multi-Metric Approach

- Find attributes (metrics) of biological community that respond to human influence
 - Tolerant/Intolerant taxa (tolerance)
 - Total taxa (richness)
 - Dominant taxa percentage (composition)
- Meaningful metrics combined to form Index of Biotic Integrity (IBI)
 - Unitless score o 100

Biological Indicators

<u>Fish</u>

- Public interest
- Sedentary during summer months
- Persistent populations that recover quickly
- Long life spans
- Important to Aquatic Life Use standards

Macroinvertebrates

- Easy to collect
- Common
- High diversity
- Rapid colonization
- Sedentary
- Variability in tolerance
- Vital link in food web

Field Collection - Fish

- Long-line Electrofishing
- Sample all available habitat types

Field Collection - Fish

Field Collection - Macroinvertebrates

- Modified D-frame dip net
- Sample collected at 11 transects (A-K)
- Combined into 1 composite sample, preserved with ethanol

Field Collection - Macroinvertebrates

Water Quality and Physical Habitat

Where – all perennial waters

Ecoregions of North Dakota

Sampling Sites

Reference Site

Disturbed Site

Results – Fish IBI

Results – Macroinvertebrate IBI

Average IBI Score by Drainage – Lake Agassiz Plain

Average IBI Score by Drainage – Lake Agassiz Plain

Other Projects

- National Aquatic Resource Surveys (NARS)
 - Random site selection provides statistically valid ecological results
 - Periodic assessments sponsored by US EPA
 - 2008-2009 National Rivers and Streams Assessment (NRSA)
 - 2013-2014 National Rivers and Streams Assessment (NRSA)

NRSA

Results: 2008-2009 NRSA

Total fish collection

- 10,949 individuals
- Species richness ranged from 1 – 19 with an average of 8.
- 54 species
 - Fathead minnow 1301 (11.9%)
 - Common carp 1145 (10.5%)
 - Sand shiner 1120 (10.2%)
 - Gizzard shad 1059 (9.7%)
 - White sucker 864 (7.9%)

Results: 2008-2009 NRSA

- Species richness ranged from 6 – 42 with an average of 27.
- 204 taxa
 - Genus level
- Most dominant taxa
 - Hyalella (scuds)
 - Caenis (mayflies)
 - Simulium (black fly)
 - Chironomus (bloodworms)
 - Polypedilum (midge)

Results: 2008-2009 NRSA

Fish Condition

Macroinvertebrate Condition

Access

Lake Agassiz Plain

Fish Summary

- 54,966 Individuals
- 62 species
- Most abundant numerically
 - Fathead minnow (19.8%)
 - Common shiner (16.7%)
 - Blacknose dace (10.1%)

NANFA.ORC

Northern Glaciated Plains

Fish Summary

- 32,914 Individuals
- 49 species
- Most abundant numerically
 - Fathead minnow (39.4%)
 - Sand shiner (9%)
 - White sucker (8.9%)

Northwestern Glaciated Plains

Fish Summary

- 7,314 Individuals
- 23 species
- Most abundant numerically
 - Fathead minnow (44.9%)
 - Creek chub (18%)
 - White sucker (17.9%)

Northwestern Great Plains

Fish Summary

- 19,928 Individuals
- 47 species
- Most abundant numerically
 - Fathead minnow (34.2%)
 - Sand shiner (14.8%)
 - Flathead chub (10.4%)

VANFA.ORG

Questions?