

National Water Quality Assessment Program

In Cooperation with North Dakota Department of Health and Minnesota Pollution Control Agency

Structural Equation Modeling Of Phosphorus in the Red River Basin

Karen R. Ryberg, U.S. Geological Survey 2016 North Dakota Water Quality Monitoring Conference March 4, 2016

Project Mileposts

- Literature review
- Calculation of phosphorus loads
- Determination of multiple working hypotheses
- Assembly of causal data
 - Estimation of missing values
- Structural equation model

Literature Review

What have people said about the causes of total phosphorus in the Red River of the North?

Published in: Ryberg, K.R, 2015, The impact of climate variability on streamflow and water quality in the North Central United States: Fargo, North Dakota State University, Ph.D. dissertation, 277 p.

Causal Attribution

Suggested that the higher total phosphorus (TP) concentrations in the Pembina River might be attributable to soil characteristics or agricultural practices and the topography, which is steeper than most of the Basin.

> Suggested that soils or agricultural practices contributed to the high phosphorus in the Rabbit River and that effluent from Fargo and Moorhead wastewater treatment plants likely contributed to the high phosphorus in the Red River near Perley and Halstad.

> > Trends may have been related to livestockmanagement changes.

SEM

Supports the testing of causal hypotheses.

Calculation of Annual Total Phosphorus Loads at 6 Sites

Published for Fargo/Moorhead and Emerson in:

Ryberg, K.R, 2015, The impact of climate variability on streamflow and water quality in the North Central United States: Fargo, North Dakota State University, Ph.D. dissertation, 277 p.

Ryberg, K.R., Akyüz, F.A., and Lin, W., 2015, Changes in total phosphorus concentration in the Red River of the North Basin, 1970–2012: American Society of Agricultural and Biological Engineers ASABE/CSBE North Central Intersectional Meeting, Fargo, N. Dak., April 10-11, 2015, paper number RRV15-054, 9 p. http://dx.doi.org/10.13031/rrv2015054.

Sites with Sufficient Data for Load Calculation

Loads will be published in a USGS Data Release

Analyzed using WRTDS

Weighted Regressions on

- Time,
- Discharge (streamflow),
- and Season.

Smoothing model that computes estimates of concentration and flux (load) for every day in the study period.

Hirsch, R.M, Moyer, D.L., and Archfield, S.A., 2010, Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs, Journal of the American Water Resources Association p. 857-880.

The Phosphorus Cycle

A Basis for Multiple Working Hypotheses

The Phosphorus Cycle

Modified from U.S. Environmental Protection Agency, http://www.epa.gov/agriculture/ag101/impactphosphorus.html

Diagram courtesy of the Integration and Application Network (ian.umces.edu), University of Maryland Center for Environmental Science. Source: Lane, H., J.L. Woerner, W.C. Dennison, C. Neill, C. Wilson, M. Elliott, M. Shively, J. Graine, and R. Jeavons. 2007. Defending our National Treasure: Department of Defense Chesapeake Bay Restoration Partnership 1998-2004. Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge: MD.

The Phosphorus Cycle

Modified from U.S. Environmental Protection Agency, http://water.epa.gov/type/rsl/monitoring/vms56.cfm

Subset Multiple Working Hypotheses

Causal factors	Potential influence	Comments (Additional Information/Mechanism)	Data	Decision and Justification						
Agriculture										
Fertilizer	Phosphate fertilizer makes its way to the stream in crop residue or adsorbed to sediments	Phosphates "not very mobile in soils and sediments" (Hem, 1985). However, the Red River Basin is subject to overland flooding (visualized in Ryberg et al., 2007). Overland flooding can transport phosphate adsorbed to sediment to the	National phosphorus fertilizer data compiled by the USGS	Use						
Animal waste	Animal w 15th harticularly in the form of an are done as fertil z ir contribute v to streams	Wiste could be poblized directly by one fait if ow prot part o's bis cruded to simams	Manure data mile i vytta (66). POI. an t. so 2, wodta have to interpolate be-ween years	Maybe.						
Soil erosion (CRP and percent clay soil as surrogates)	Increased soil erosion would bring more phosphorus to the river	The conservation reserve program (CRP) is a surrogate for soil erosion as it represents acreage taken out of agricultural production. CRP related to other climatic and economic factors.	Data compiled by the USGS	Use CRP data.						
Percent agricultural land	Increased agricultural land- use would represent increases on fertilizer and potential soil erosion, both of which contribute to fertilizer	Correlated with fertilizer and CRP.	Data compiled by the USGS	No. The percent agricultural land has been very high, and stable, in the Red River Basin for the entire study period and, therefore, would not provide much explanatory information.						

Data for Potential Causal Factors

The **BIGGEST** Challenge

Will be published in a USGS Data Release

Data Determined Feasible to Use

- Annual precipitation
 - Including a number of measures of annual seasonal precipitation
- Land use
 - Percent land developed, semi-developed, in agricultural production
- Percentage of cropland in Conservation Reserve Program
- Crop types
 - Percent of agricultural land in harvested wheat, corn, and soybeans
- Phosphorus from fertilizer and from manure
- Total phosphorus load from wastewater treatment plants in the basin

The Challenge

Widely varying periods of record

Some annual series, some every 5 years, every 4 years, or varying measurement intervals

Annual estimates needed

At right is an example of the missing data problem for select years during the study period.

Year	Land Use	CRP	Crop Type	P from Fertilizer	P from Manure	WWTP Load
1972	X	NA	X	X	X	×
1985	×	NA	×	\checkmark	×	×
1986	×	\checkmark	\checkmark	\checkmark	×	\checkmark
1987	×	\checkmark	×	\checkmark	\checkmark	×
1988	×	\checkmark	×	\checkmark	×	\checkmark
1989	×	\checkmark	×	\checkmark	×	×
1990	×	\checkmark	×	\checkmark	×	\checkmark
1991	×	\checkmark	×	\checkmark	×	×
1992	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2012	\checkmark	\checkmark	\checkmark	×	×	×

Missing Years Estimated

- In some cases, such as agricultural land use, there was little change over multi-year periods, so missing years were filled in with linear interpolation.
- Many other variables have much more yearto-year variability. They were estimated using imputation of missing values with principal components analysis.

Preliminary

Will be published in a journal article

"Structural equation models (SEMs), also called simultaneous equation models, are multivariate (i.e., multi-equation) regression models. Unlike the more traditional multivariate linear model, however, the response variable in one regression equation in an SEM may appear as a predictor in another equation; indeed, variables in an SEM may influence one-another reciprocally, either directly or through other variables as intermediaries. These structural equations are meant to represent causal relationships among the variables in the model" (Fox, 2002).

Fox, John, 2002, Structural Equation Models: Appendix to an R and S-PLUS companion to applied regression, http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-sems.pdf

In pursuit of knowledge, every day something is acquired; in pursuit of wisdom, every day something is dropped.

- Lau Tzu

Actual Working Model

Explains about 60% of the variability in total phosphorus flux in the Red River at Emerson, Manitoba.

More to come

Karen R. Ryberg, Ph.D. Statistician USGS ND Water Science Center

kryberg@usgs.gov

Thanks to James Falcone, USGS National Water Quality Assessment Program, for GIS processing of data to study basins.

Thanks to Tammy Ivahnenko, USGS Water-Use Data and Research Program, and the ND Department of Health, for wastewater treatment plant data.

