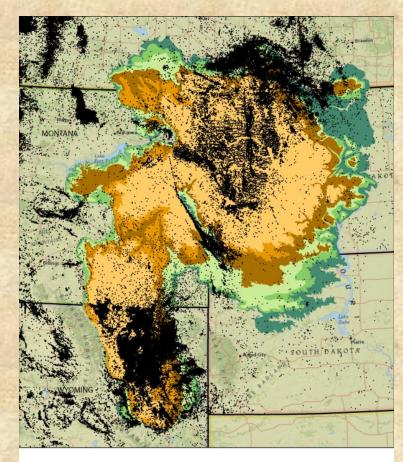


USGS Groundwater Quality Assessment in the Williston Basin

Joel Galloway Acting Director USGS North Dakota Water Science Center


ND Water Quality Monitoring Conference Bismarck, ND March 2-4, 2016

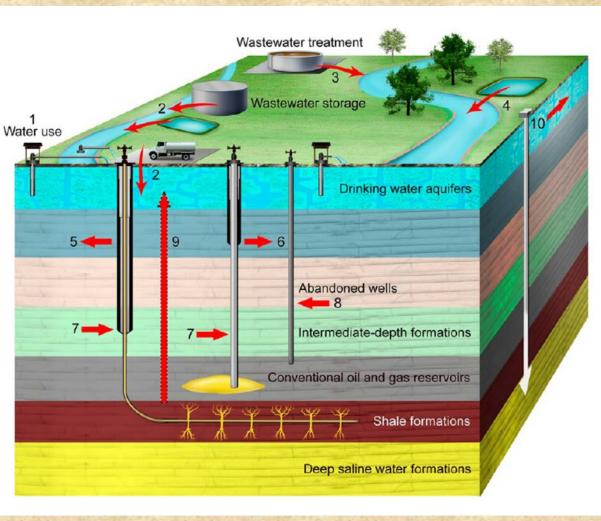
U.S. Department of the Interior U.S. Geological Survey Coauthors: Peter McMahon, COWSC Joshua Valder, SDWSC, Gregory C. Delzer, SDWSC, Jill D. Frankforter, MTWSC, Rod Caldwell, WYMTWSC

Questions

- What are the current conditions of the water resources in the area of energy development?
 - Groundwater
 - Surface water

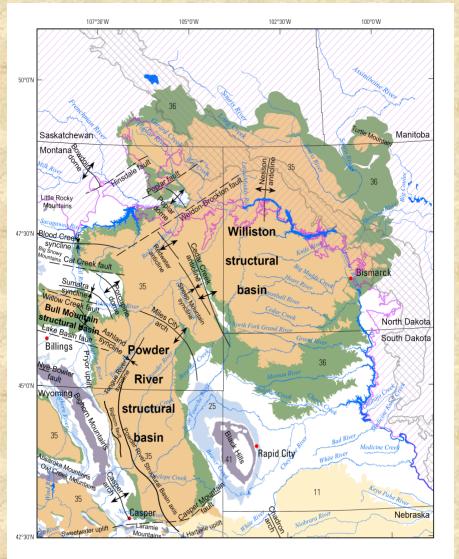
Oil and gas wells drilled through 2012 (Wyoming is through 2010)

http://mt.water.usgs.gov/projects/WaPR/


Study Objective

Characterize water-quality conditions of groundwater in the energy development area of Eastern MT and Western ND

Potential Pathways for Contaminants to Reach groundwater


Likely pathways...

- Spills and leaks at land surface (2-4)
- Leaking casing/annular space, active and abandoned producing wells (5-8) and injection wells (10)

Vengosh et al. (2014)

Hydrogeology

http://mt.water.usgs.gov/projects/WaPR/

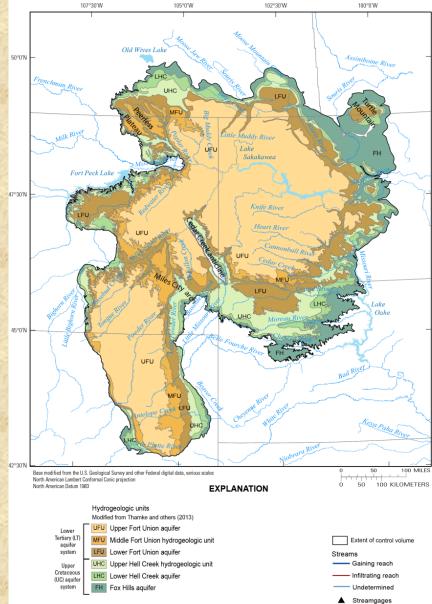
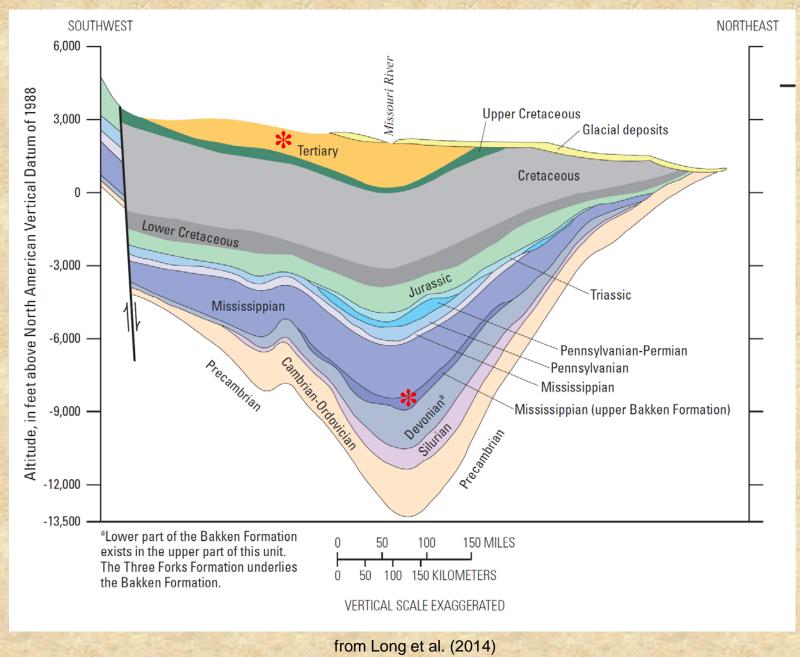
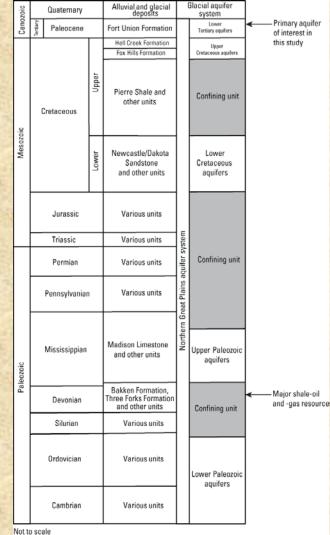
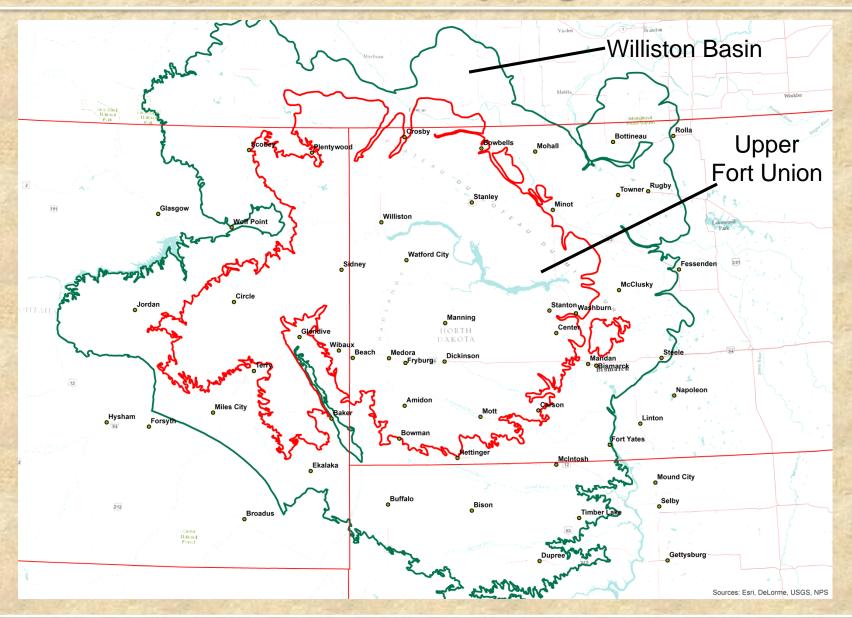



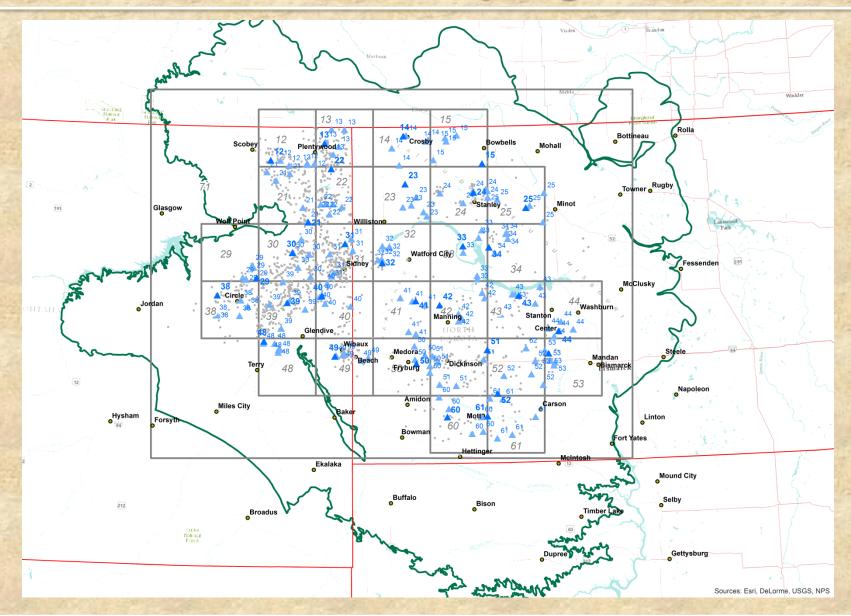
Figure 1-1. Precipitation, recharge from precipitation, and gaining and infiltrating stream reaches in the study area


USGS

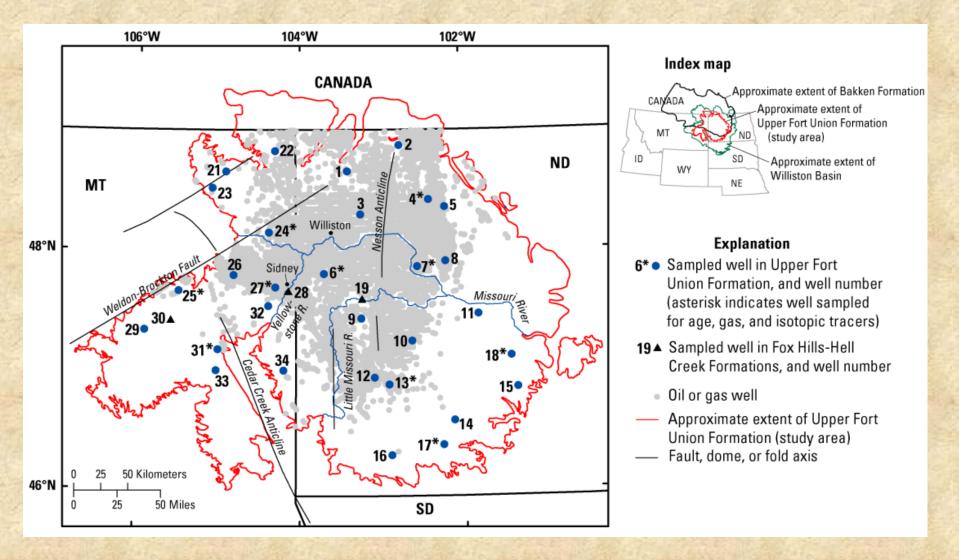
Well Selection

30 wells randomly selected in Upper Fort Union Formation


- The Fort Union aquifer is used more broadly for domestic and municipal supplies
- Fewer water-quality data from the Fort Union aquifer in comparison to those in the upper Cretaceous.
- Current interest in better understanding the interaction of groundwater between glacial and bedrock aquifers, the shallowest of which is the Fort Union aquifer.
- 4 wells selected in lower units- Fox Hills and Hell Creek Formations
 - 2 in relatively low energy development areas
 - 2 in relatively high energy development areas
- Domestic wells selected only
 - Less time and equipment for sampling



Selection of sampling sites



Selection of sampling sites

Well Selection - continued

Sampling Approach

- Samples collected in August-October 2013
- Used standard protocols outlined in USGS National Field Manual http://water.usgs.gov/owg/FieldManual/
- Samples analyzed for:
 - Major ions
 - Trace elements
 - Nutrients
 - Volatile organic compounds (VOCs) (23 compounds)
 - Methane and Ethane
 - Hydrocarbon composition
 - Gasoline Range Organics (GRO) and Diesel Range Organics (DRO)
 - Dissolved organic carbon (DOC)
 - Isotopes (strontium, carbon, hydrogen, oxygen, tritium, sulfur hexafluoride, hydrocarbons)
 - Dissolved gases
 - Noble gases
 - Field measurements (pH, SC, temperature, DO, turbidity, alkalinity, sulfide)

Results

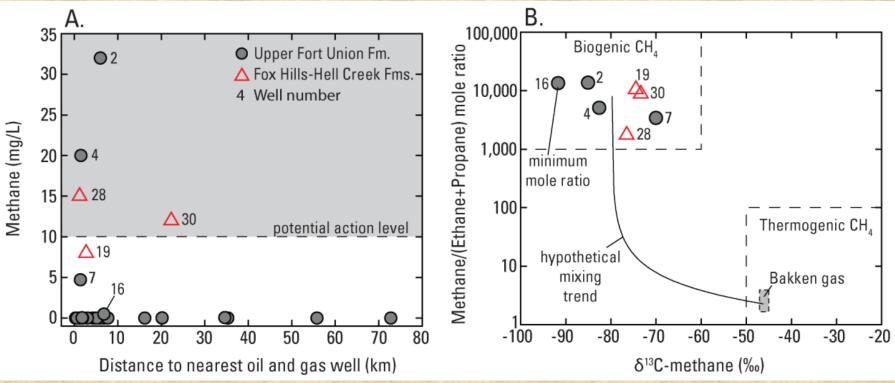
Water Quality in the context of Standards

					Concentration			
	Type of			Numb er of sampl				Number of wells with a concentration higher than
Constituent	Standard	Standard	Units	es	Min.	Med.	Max.	the standard
Arsenic	MCL	10	µg/L	30	<0.08	0.26	11.5	1
Barium	MCL	2000	µg/L	30	5.26	18.2	223	0
Fluoride	MCL	4	mg/L	30	<0.1	0.46	4.22	1
Nitrate-N	MCL	10	mg/L	30	<0.04	<0.04	6.47	0
Selenium	MCL	50	µg/L	30	<0.03	<0.09	42.8	0
Uranium	MCL	30	µg/L	30	0.01	0.49	23.2	0
Benzene	MCL	5	µg/L	30	<0.026	<0.026	<0.026	0
Ethylbenzene	MCL	700	µg/L	30	<0.036	<0.036	<0.036	0
Toluene	MCL	1000	µg/L	30	<0.02	<0.02	<0.69	0
Chloride	SMCL	250	mg/L	30	1.68	9.59	162	0
Fluoride	SMCL	2	mg/L	30	<0.1	0.46	4.22	6
Iron	SMCL	300	μg/L	30	<4	112	4460	11
Manganese	SMCL	50	μg/L	30	3.72	27.4	1090	11
Sulfate	SMCL	250	mg/L	30	<0.18	362	1830	17
Dissolved solids	SMCL	500	mg/L	30	371	1135	3590	29
Methane		10	mg/L	30	<0.00022	0.005	32	4
Dissolved solids	SMCL 	500	mg/L mg/L	30 30	371 <0.00022	1135	3590	29

MCL – Maximum contaminant level

USGS

SMCL - Secondary maximum contaminant level


Results

- GRO and DRO
 - No values greater than reporting Limit (RL)
- VOCs (23 compounds analyzed)
 - 1 detection of benzene -MT
 - 1 detection of toluene MT
 - 1 detection of acetone ND
 - All detections were only slightly above RL

Methane concentrations & sources

18 of 34 wells had detectable methane,
1 well had detectable ethane

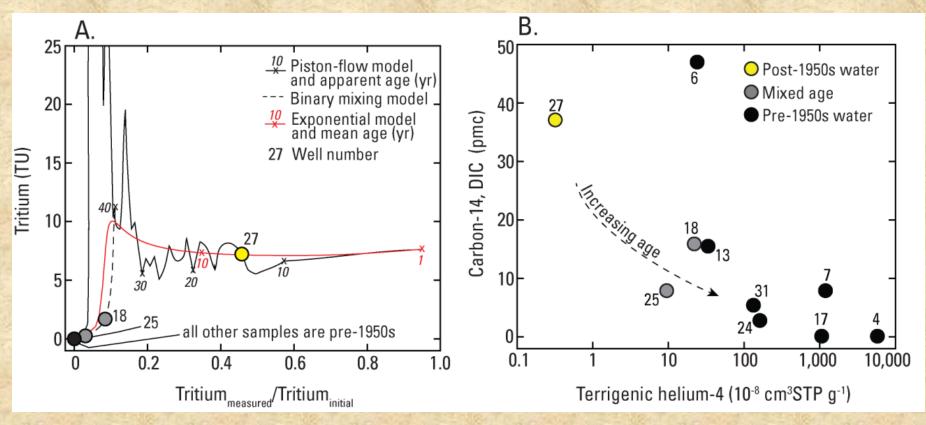
 7 samples had sufficient methane for isotopic analyses (>4 mg/L)

≈USGS

Bakken gas composition from Price (1995) and Price and Schoell (1995)

- Isotopes indicated biogenic gas, or gas from local production in the aquifer
- Thermogenic gas is what would be expected to be associated with Bakken oil and from deep hydrocarbon reservoirs

Water-Quality Conclusions


- No indication that energydevelopment activities affected groundwater quality in the upper Fort Union Formation
 - Comparison of inorganic and organic chemical concentrations to health based drinking-water standards
 - Correlation analysis of concentrations with oil and gas well locations
 - Isotopic data
- Limitation: only 34 wells sampled over a 38,000 mi² area
- Important to consider these results in the context of groundwater age.....

Groundwater age

- ~25% post-1950s
- ~15% mixed age
- ~60% pre-1950s
- Pre-1950s water had median ages of 4,000 5,400 years

Groundwater Age Conclusions

- Groundwater ages in depth zone of the upper Fort Union Formation used for domestic supply predate recent increases in energy development
- Old groundwater ages indicative of slow groundwater velocities (10 to 25 meters per year)
- Domestic wells not suited for detecting local contamination from spills or oil well activities
 - wells located > ~0.5 km from O&G wells not suited for detecting contamination from recent subsurface leaks

 Distance to nearest oil and gas well from our domestic wells: 0.3 to 73 km

Implications:

- Monitoring needed closer to energy-development activities
 - Important for showing effects
- Monitoring needed as a long-term commitment

Methods and results published:

http://onlinelibrary.wiley.com/doi/10.1111/gwat.12296/pdf

McMahon, P.B., Caldwell, R.R., Galloway, J.M., Valder, J.F., and Hunt, A.G, 2014, Quality and Age of Groundwater in the Bakken Formation Production Area, Montana and North Dakota: Groundwater, v. 53, Issue S1, p. 81-94