Hydrologic and Water-Quality Impacts of Agricultural Land Use Changes Incurred from Bioenergy Policies

Zhulu Lin
North Dakota State University at Fargo

Haochi Zheng
University of North Dakota at Grand Forks

This work is funded by USDA National Institute of Food and Agriculture (Projects: 2013-67020-21366 & 2013-03902) and NSF (Award: IIA-1355466)
EISA (2007) and land use changes

Independence and Security Act (EISA) signed in December 2007
- Mandates use of 15 BGY corn-based ethanol in transportation fuels by 2015 and 36 BGY of renewable fuels by 2022
- 137 BG gasoline consumed in US in 2014 (EIA)

Wright & Wimberly (2013)
- GRCS – Grassland to Corn or Soybeans from 2006 to 2011
- Relative GRCS – absolute GRCS divided by 2006 grassland

Red River Basin (RRB)
Other issues in RRB: (1) Spring flood

- Wet weather cycle since 1993
- 7 out of 15 major floods occurred in the last 20 years (Fargo)
- 2009 (1st), 2010 (7th), 2011 (4th)
Other issues in RRB: (2) Nutrients to Lake Winnipeg

- RRB’s portions among all Lake Winnipeg tributaries
- Monthly average flow: 16%
- TP load: 55% (US 32%)
- TN load: 34% (US 22%)

— Source: Manitoba Water Stewardship (2011)
Objectives

- To estimate agricultural land use changes that occurred in the Red River Basin after the enactment of EISA of 2007

- To assess the impacts of the bioenergy-related land use changes on spring flood and water quality in the Red River Basin through economic-hydrological modeling
Overall land use changes – CropScape

Pre-EISA Land Use = \(\frac{LU_{2006} + LU_{2007}}{2} \)

Current Land Use = \(\frac{LU_{2012} + LU_{2013}}{2} \)
Crop yields at different locations and under different management

Econ Model

Plant/hydrology Models

Land-use distribution probabilities

Hydrology and water quality impacts

Bioenergy policies and market demand

Economic-physical modeling

Hydrology and water quality impacts
Plant growth and hydrology model – SWAT

- Development and calibration
 - 178 subbasins/2136 HRUs
 - 45 counties (SSURGO)
 - 30 weather stations
 - 12 land-use classes
 - 5-m DEM (LiDAR)
 - 5 large lakes and reservoirs
- Calibration
 - County-level crop yields
 - 16 streamflow stations
 - 2 water quality stations
- Simulation (2000-2012)
 - 4 dry years + 4 wet years
- Lin et al. (2015)
Results and Discussion
Bioenergy-induced land use changes

- **Corn**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)
 - Corn demand + 60%

- **Soybean**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)
 - Corn demand + 60%

- **Wheat**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)
 - Corn demand + 60%

- **Sugarbeet**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)

- **Forest**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)

- **Pasture**
 - Pre-EISA (NASS 2006)
 - Current (NASS 2013)
 - Corn demand + 60%
Land use change impact on WQ (1)

Sediment

- Pre-EISA: 4000 tonnes/yr
- Bioenergy: 3900 tonnes/yr
- Overall: 3900 tonnes/yr

Total Phosphorus (TP)

- Pre-EISA: 1500 tonnes/yr
- Bioenergy: 1400 tonnes/yr
- Overall: 1400 tonnes/yr
Land use change impact on WQ (2)

Nitrate (NO$_3$)

Total Nitrogen (TN)

<table>
<thead>
<tr>
<th>Pre-EISA</th>
<th>Bioenergy</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0%</td>
<td>5.9%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-EISA</th>
<th>Bioenergy</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5%</td>
<td>9.1%</td>
<td></td>
</tr>
</tbody>
</table>
Impacts on spring flood

Normalized Hydrographs
(2000-2012 Single Peak Snowmelt Events)
Conclusions

* Land-use changes in the RRB from 2006 to 2013:
 * Increased: Corn (62%), Soybean (18%), sugarbeet, canola, dry beans, alfalfa;
 * Decreased: Spring wheat (30%), forest (18%), pasture (50%), barley, oats;
 * Factors: bioenergy policies, soil salinity, etc.

* Impacts on water quality
 * Overall land use change – sediment by 2.6%, TP by 14.1%, nitrate by 5.9%, TN by 9.1%.
 * Bioenergy policy contributions – sediment by 1.8%, TP by 2.2%, nitrate by 8.0%, TN by 7.5%

* Impacts on spring flood
 * No change on flood magnitude
 * Greater prediction uncertainty under post-EISA condition
Acknowledgements

* Mohammad Anar (NDSU), Brent Silvis (UND), and Dave Zimmermann (NRCS) for their assistance