Summary of tile drainage water quality monitoring for seven years in Southeast North Dakota

NDSU NORTH DAKOTA STATE UNIVERSITY

Xinhua Jia, Associate Professor, P.E.

Department of Agricultural and Biosystems Engineering

ND Water Quality Monitoring Conference March 2-4, 2016 Bismarck, ND

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Acknowledgements

Our appreciation goes to the landowner at Fairmount, ND for providing his highly productive land for this research since 2007.

Collaborators: Thomas Scherer and Dean Steele at ABEN Thomas DeSutter at Soil Science Bill Schuh at ND State Water Commission 7 graduate students at ABEN & ECS 3 undergraduate students at ABEN

NDSU NORTH DAKOTA STATE UNIVERSITY

Background

- Subsurface Drainage is used to drain excess water from soil profiles
- Controlled Drainage is the process of controlling the timing and quantity of water from fields
- Subirrigation is the application of irrigation water directly to the root zone to raise the effective water table depth

NDSU NORTH DAKOTA STATE UNIVERSITY

Subsurface Drainage

Controlled Drainage

Subirrigation

 \mathcal{O}

Experimental Site: Fairmount Richland County North Dakota

http://www.rrbdin.org/r ed-river-basinoverview-2

Controlled Drainage and Subirrigation at Fairmount, Richland County, ND

Controlled Drainage

Subirrigation

Water Quality Monitoring -- surface ditch, subsurface drainage outflow & shallow groundwater

Year	Locations	Cations	Anions	Calculated	Additional
2008	26	23	13	2	
2009	26	26	13	2	39 Pesticides at 2 sites
2010	26	23	13	2	
2012	4	23	7	2	
2013	4	23	7	2	
2014	4	23	7	2	
2015	4	23	7	2	

Jia, X., T.M. DeSutter, Z. Lin, W.M. Schuh, and D.D. Steele. 2012. Subsurface drainage and subirrigation effects on water quality in southeast North Dakota. *Transactions of the ASABE* 55(5): 1757-1769.

Water Quality Monitoring at the Outlet

Rainfall

measurement

Current sensor and Hobo event datalogger – Drainage outflow

Biweekly Water Sampling

Rainfall, drainage outflow, and Nitrate-N, Sulfate, Phosphorus, and Total Dissolved Solids in 7 yrs \rightarrow 2008-10, and 2012-15.

Monthly Rainfall

NDSU NORTH DAKC

Monthly Flow

NDSU NORTH DA

Monthly Nitrogen Load

NDSU NORTH DA

Monthly Sulfate Load

NDSU NORTH DA

Monthly TDS Load

NDSU NORTH DAK STATE UNIV

Monthly data comparison between 2008-10 and 2012-15

 Similar rainfall amount
Less drainage outflow in 2012-15
Similar nitrogen load in May and June, but less in other 2012-15 months
Less sulfate and TDS in 2012-15

What's the cause of less flow in 2012-15???

Daily Drainage Outflow (2008-10)

Daily Drainage Outflow (2012-15)

Daily Nitrogen Load (2008-10)

Daily Nitrogen Load (2012-15)

Daily flow and nitrogen load comparison between 2008-10 and 2012-15

- Daily flows were in the similar range, but maximal daily flows were slightly lower in 2012-15, 4.4 mm/day in 2008 vs. 3.95 mm/day in 2014.
- Daily nitrogen loads were in similar range, and the maximal daily nitrogen loads were similar, 0.67 vs. 0.69 lb/ac in 2008 and 2014, respectively.
 What's the cause of less flow in 2012-15???

What's the cause of less flow in 2012-15?

- There should be more flow in 2012-15 because the system was converted to 30 ft spacing, 3.2-4 ft depth, and 1% grade in 2011. Narrow spacing results in higher drainage flow.
- Subirrigated with groundwater from the down stream using the same mains. Added water to the field.
- Used the same outlet and same method for flow measurements.

Annual Water Quality Monitoring

Year	2008	2009	2010	2012	2013	2014	2015
Crop	Corn	Corn	Soybean	Sugarbeet	Corn	Corn	Soybean
Rainfall (in)	26.1	16.5	16.9	16.5	28.5	14.7	17.8
Drainage (in)	5.68	5.67	5.89	0.10	4.20	2.18	0.99
Drainage duration (day)	126	115	190	13	122	60	54
NO ₃ -N (lb/ac)	9.87	6.77	9.43	0.08	5.81	10.15	1.85
PO ₄ -P (lb/ac)	0.17	0.23	0.29	0.01			
SO ₄ (lb/ac)	3267	3337	4283	15	1323	973	430
TDS (lb/ac)	4589	5315	6318	26	1619	1104	482

NDSU NORTH DAKOTA STATE UNIVERSITY

Soil difference

What's the cause of less flow in 2012-15?

Reduced drainage duration using controlled drainage

- Reduced the drainage outflow
 - Reduce the chemical loads to the surface water

Soil difference?

SUMMARY OF WATER QUALITY MONITORING

- Chemical loads were reduced from 2008-10 to 2012-15
- Decrease of drainage flow led to chemical load reduction
- Shorter drainage times caused less drainage flow
- Drainage water management resulted in shorter drainage times
- Change of drainage area (soil properties) leads to reduced flow and load?

NDSU NORTH DAKOTA STATE UNIVERSITY Current funding: North Dakota Agricultural Experiment Station North Dakota Water Resource Research Institute North Dakota State Water Commission North Dakota Department of Health ND Soybean Council USDA AFRI

Past funding: USDA CSREES 2008-35102-19253 USDA NRCS 68-6633-8-0056

Thank you!

Xinhua Jia, Ph.D., P.E.

Associate Professor Morrill Hall Room 204 Department of Agricultural and Biosystems Engineering North Dakota State University NDSU Dept. 7620 PO Box 6050 Fargo ND 58108-6050 Phone: 701-231-6453; Fax: 701-231-1008 E-mail: xinhua.jia@ndsu.edu

