



## Continuous Water-Quality Monitoring for Estimating Concentrations and Loads in the Red River

By Joel M. Galloway, USGS
North Dakota Water Science
Center

North Dakota Water Quality Monitoring Conference March 4-6, 2014

U.S. Department of the Interior U.S. Geological Survey









### Background

Red River Basin is an important water resource for the region. There are many water quality concerns including:

- Nutrient loading to the International border/Lake Winnipeg
- Effects of Devils Lake outlet discharges
- Effects of drainage tile
- Maintaining an adequate drinking water supply





## Continuous Real-time Water Quality for the Red River

- Continuous WQ data collected at Fargo since 2003 and from Grand Forks since 2007
- Data is collected every 15 minutes and updated to the web every hour
  - Water temperature
  - Dissolved oxygen
  - Specific conductance
  - pH
  - Turbidity









### Background



### Why Continuous Water-Quality Data?

- Water-supply/wastewater management
  - Tracking changes in water-quality in near real time can adjust treatment
  - Emergency response
- Can assess water-quality dynamics better than can be done efficiently/affordability with discrete samples
  - For example diurnal fluctuations of dissolved oxygen
- Can be used to estimate continuous constituent concentrations
- Load computation







90% prediction interval
Suspended-sediment concentration ——

--- PROVISIONAL DATA SUBJECT TO REVISION ----



#### Water Temperature 30 **Red River at** Temperature, in degrees Celsius 25 20 15 10 Fargo -5 18 Dissolved oxygen ion, ver liter 16 14 16 Dissolved oxygen in milligrams per liter 14 Concentration, 12 Specific conductance 10 8 6 4 Apr Jun Jul Aug Sep Oct Nov May 2006 ndar in microsiemens per centimeter 1600 Specific conductance at 25 degrees Celsius Specifc conductance, 1400 1200 Turbidity 1000 800 600



1/1/14

## Red River at Grand Forks





### **Discrete Sample Collection**

- Samples mainly collected as part of the NDDH Ambient Sampling program and NDSWC High-Low Sampling Program
- Samples collected approx. 8 times/yr
- Sample constituents
   varied with time –
   Major ions, trace
   metals, nutrients,
   suspended sediment





## Estimating Constituent Concentrations - Regression Analysis

- Equations were previously developed for Fargo using data from 2003-05 by Ryberg (2006), and equations were not yet developed for Grand Forks
- Regression equations were updated for Fargo and created for Grand Forks using data collected from 2003-2012



Prepared in cooperation with the Bureau of Reclamation, U.S. Department of the Interior

Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the Red River of the North, Fargo, North Dakota, 2003-05

Scientific Investigations Report 2006-5241

U.S. Geological Survey



### Regression Analysis

- Developed concentration estimates of
  - Total dissolved solids (TDS)
  - Sulfate (SO4)
  - Chloride (CI)
  - Nitrate plus nitrite (NO2NO3)
  - Total phosphorus (TP)
  - Suspended sediment (SSC)
- Although evaluated many different variables, the most used explanatory variables included – Flow (Q), specific conductance (SC), turbidity (turb), time (t)
- Some variables needed log transformation
  - non-normality and heteroscedasticity, or non-constant variance
  - Determined bias correction factor to retransform result back to "real space"



## Red River at Fargo Major Ions

TDS = 0.655SC -21.695

Range of TDS: 211 - 670 mg/L

# of samples used: 75

 $R_a^2 = 0.99$ 

SO4 = 0.426SC + 56.52 log(Q) - 7.248 cos( $4\pi t/365$ ) - 5.918sin( $4\pi t/365$ ) - 324.158

Range of SO4: 48 - 341 mg/L # of samples used: 75  $R_a^2 = 0.94$ 

 $log(CI) = 0.609log(SC) + 0.160log(Q) - 0.0359cos(4\pi1/365) - 0.00734sin(4\pi1/365) - 0.0264$ 

Range of CI: 6.5 – 45.5 mg/L

# of samples used: 69

 $R_a^2 = 0.66$ 





# Red River at Fargo Estimated Concentrations Major lons



Sample removed from analysis



### Red River at Grand Forks **Major Ions**

= 0.642SC -13.701

Range of TDS: 208 - 614 mg/L # of samples used: 66

 $R_a^2 = 0.98$ 

SO4 = 0.353SC + 36.406log(Q) -11.011 $\cos(2\pi t/365)$  - 6.178 $\sin(2\pi t/365)$  - 239.31

Range of SO4: 45 – 278 mg/L # of samples used: 65  $R_a^2 = 0.89$ 

log(CI) = 0.911log(SC) + 0.141log(Q) - $0.0391\cos(4\pi / 365)$  $-0.0209\sin(4\pi/365) - 0.0000229t - 0.928$ 

Range of CI: 7.0 - 30.0 mg/L # of samples used: 64

 $R_a^2 = 0.77$ 





#### Red River at Grand Forks

## Estimated Concentrations Major lons





13

90-percent prediction interval Estimated concentration Measured concentration Sample removed from analysis

### Red River at Fargo Nutrients and Sediment

log(NO2NO3) = 0.578log(turb) + 0.418log(Q) - 3.146

Range of NO2NO3: 0.03 – 2.14 mg/L as N

# of samples used: 84

 $R_a^2 = 0.46$ 

 $log(TP) = 0.468log(turb) + 0.217log(Q) + 0.00881cos(2\pi t/365) - 0.137sin(2\pi t/365) - 2.253$ 

Range of TP: 0.07 - 1.28 mg/L as P

# of samples used: 84

 $R_a^2 = 0.74$ 

log(SSC) = 0.947log(turb) + 0.128log(Q) - 0.0656

Range of SSC: 3 - 1,160 mg/L

# of samples used: 96

 $R_a^2 = 0.95$ 





### Red River at Fargo

## **Estimated Concentrations**

**Nutrients and Sediment** 







### Red River at Grand Forks Nutrients and Sediment

NO2NO3 = 0.00655Turb - 0.133

Range of NO2NO3: 0.03 – 3.15 mg/L as N

# of samples used: 37

 $R_a^2 = 0.73$ 

TP = 0.000859Turb + 0.0824log(Q) + 0.0182cos( $2\pi t/365$ ) - 0.0413sin( $2\pi t/365$ ) - 0.181

Range of TP: 0.08 - 0.68 mg/L as P

# of samples used: 40

 $R_a^2 = 0.87$ 

log(SSC) = 0.970log(Turb) + 0.312

Range of SSC: 4 - 1,110 mg/L

# of samples used: 35

 $R_a^2 = 0.96$ 





### Red River at Grand Forks

## **Estimated Concentrations**

**Nutrients and Sediment** 







### **Load Estimation**

Daily Load (tons/d) =
(Estimated Daily mean Conc) X (Daily mean Flow)





### Annual Loads

- Greatest TDS, CI, TP, and SO4 annual loads in 2011
- Greatest
   NO2NO3 and
   SSC annual loads
   in 2009





### Monthly Loads

 Most of the annual loads generally delivered in March through June at both sites





### Summary

- Regression used to estimate constituent concentrations from discrete and continuous data
  - Generally good estimates for TDS, SO4, TP, SSC
  - Fair estimates for Cl and for NO2NO3 at GF
  - Poor estimates of Cl and NO2NO3 for Fargo
- Constituent loads computed from estimated concentrations and streamflow
  - Greatest TDS, CI, TP, and SO4 annual loads in 2011, least in 2012.
  - Greatest NO2NO3 and SSC annual loads in 2009, least in 2012
  - Most of the annual loads delivered in March through June at both sites
- Continuous real-time water-quality can be useful for water-resource management
  - Treatment management/emergency response
  - Water-quality dynamics
  - Load estimation



### **ANY QUESTIONS?**



