Remediation of Feedlot Nutrients Runoff by Plants

Arjun Thapa, Graduate Student

Dr. Shafiqur Rahman, Assistant Professor, Agricultural and Biosystems Engineering Dr. Chiwon W. Lee, Professor, Plant Sciences

Introduction

- Animal feeding operations (AFOs) generate significant amount of manure and wastewater
- Manure and wastewater contain high concentration of nutrients and organic matters (Crane et al., 1983)
- Improper manure management may cause surface and ground water contamination

Water Pollution

Point Source (PS) Pollution: Pollution originating at single and identifiable sources

Non-Point Source (NPS) Pollution: Pollution originating from dispersed sources

(Source: http://www.cord.edu/faculty/landa/courses/e103w00/sessions/water/sources.jpg

Water Pollution

Discharge of nutrients in to surface water may cause eutrophication and hypoxia of lagoon and estuaries (Dale et al., 2007).

Pathways for P from soils

Source: NRCS

To reduce and prevent non point source pollution

Best Management Practices (BMPs)

BMPs for Nutrient Reduction

- Physical treatment : Sedimentation, screening, aeration, filtration, floating and skimming, degasification etc. eg. vegetative filter strips
- Chemical treatment : Chlorination, ozonation, neutralization, coagulation, adsorption, ion exchange etc.
- Biological treatment : A. Aerobic: lagoons, trickling
 B. Anaerobic: septic tank
 C. Algae and Plants

Vegetative Filter/Buffer Strip

Reduce surface runoff

- Increase infiltration of runoff and nutrients
- Promote sediment deposition and filtering
- Provide nutrient uptake by plants

VFSs are not effective for all types of pollutants such as soluble nutrients

Remediation of feedlot nutrients runoff using plants in hydroponics condition

• It is a biological treatment of wastewater

 Plants uptake macro and micronutrients from the feedlot wastewater and purified it

Rational of Hydroponics Treatment of Feedlot Wastewater

- Less or no energy consumption
- Cost effective
- Nutrient can recover
- Avoiding use of chemicals
- Environment friendly
- Plants can be used for different purposes

Objectives of the experiment

 To determine the feasibility of growing water hyacinth, water lettuce, and sorghum in feedlot runoff wastewater

2. To determine nutrient uptake capacities of those plants from feedlot runoff wastewater

Challenges

Plant selection is a vital factor (Qin., 2009) – Salt tolerance and easily adaptable in feedlot runoff wastewater

Plants Used

Water hyacinth

Water lettuce

Experimental Design

- This experiment was conducted in batches.
- A completely randomize design with three replicates were conducted in a greenhouse.
- Water hyacinth, water lettuce and sorghum were hydroponically planted in plastic bucket.
 - Runoff water (without dilution, 1:1 dilution, 1:2 dilution with Reverse Osmosis water)
 - Hoagland fertilizer solution

Photographs of experiment

Photographs of experiment

Sampling and Measurement

- Plant samples were collected at the beginning and at the end of experiment for nutrients analysis
- Water samples were collected at the beginning, weekly, and at the end for nutrients analysis
- Samples were analyzed for:
 - pH, conductivity, TP, TKN, NH₄-N, NO₂-N+NO₃-N, K, etc.

Results

Total phosphorus in Hoagland solution

NO3-N in Sorghum

% nutrient reduction by Sorghum

Conclusion

• Plants grew well in all solutions

• Dilution of feedlot runoff have little effect in nutrient reduction

 In terms of plant biomass growth and nutrients reduction, sorghum outperformed other plants

Continue..

Conclusions

- TP, NO₃-N and K concentrations reduction by sorghum were higher than other plants in both experiments
- Except TKN and NO₃-N, % reduction was >80%, especially for TP, OP and NH₄-N
- Any of these plants may be used to reduce nutrients from feedlot runoff or from runoff storage ponds

Thank You!

Questions?

