Plant Phosphorus, Nitrogen, and Carbon and Soil Phosphorus in North Dakota Wetlands

Lindsey Meyers1, Shawn DeKeyser2, Jack Norland2, Christina Hargiss2, Tom DeSutter2, Mike Ell3

1URS Corporation, 2North Dakota State University, 3North Dakota Department of Health
Introduction

- Summer 2011
- Statewide wetland study as part of NWCA
- Nutrient levels
 - May reflect human activities
 - Are highly influenced by runoff from adjacent lands
 - Can drive changes in plant communities
 - Can alter wetland function
Objectives

1) Compare biomass of different plant types
2) Compare floristic quality between landscape positions and surrounding land uses
3) Compare plant C:N, P, and N:P of different plant types, landscape positions, and surrounding land use
4) Correlate plant P with floristic quality and cattail biomass
5) Correlate soil P with cattail biomass
Site Locations

• 55 wetlands statewide
Plant Sampling Methods

• Plant samples collected at 3 landscape positions
 • Upland, wet meadow, shallow marsh
 • Five 0.25 m\(^2\) quadrats clipped
 • Plant types: cattails, grasses & grass-likes, forbs & shrubs
• Plant samples analyzed for P, N, C
Soil Sampling Methods

• Soil samples collected at 3 landscape positions
 • Upland, wet meadow, shallow marsh
 • Three 500 g soil cores collected at 0-15 cm and 15-30 cm depths
 • Soil samples analyzed for P
 • Olsen and water soluble extractions
Floristic Quality

- List of all plant species
- Floristic quality calculated using the Floristic Quality Index (FQI) developed for the Dakotas
- Species assigned c-value based on tolerance to disturbance
- FQI = average c-value multiplied by the square root of the total number of species
Statistics

• Multi-response Permutation Procedures (MRPP)
 • Plant type (cattails, grasses & grass-likes, forbs & shrubs)
 • Biomass and plant C:N, P, N:P
 • Landscape position (shallow marsh, wet meadow, upland)
 • FQI scores and plant C:N, P, N:P
 • Land use (cropland, grazed/hayed, idle)
 • FQI scores and plant C:N, P, N:P

• Linear regressions
 • FQI scores & plant P
 • Cattail biomass & shallow marsh plant P
Results: Plant Type

- MRPP with Bonferroni correction

C = cattails, SM = shallow marsh, WM = wet meadow, UP = upland, FS = forbs & shrubs, GG = grasses & grass-likes
Results: Landscape Position

- SM = shallow marsh
- WM = wet meadow
- UP = upland
- MRPP with Bonferroni correction
- Plant C:N, N:P, P not significantly different
Results: Land Use

- MRPP with Bonferroni correction
- No significant differences for surrounding land use for plant C:N or P
Results: Linear Regressions

- Low R values
- Soil P was not correlated with cattail biomass
Results: Cattail Biomass & Soil P

- Conceptual models
- 4 “states”
 - Low soil P & low biomass
 - High soil P & low biomass
 - High soil P & high biomass
 - High soil P & low biomass
Conclusions

- Cattails and grasses & grass-likes tended to store the highest amounts of biomass and nutrients
- No differences in nutrients for landscape position
- Floristic quality lower in shallow marsh than wet meadow and upland
- Cattails store high levels of P; may reduce soil P
 - May affect nutrient cycling
 - Cattails remove soil P, senesce, release P back into wetland
Conclusions

• Cropped wetlands have lower FQI scores than other land uses
 • Reduced diversity and biological condition

• Cropped and grazed/hayed wetlands N-limited
 • Prairie landscape historically N-limited
 • Cropland may have severe N-limitation

• Idle wetlands P-limited
 • May be due to increased graminoid cover
 • May lead to declines in diversity
Thank You!
NDSU, NDDoH, EPA, NRCS, ND Dept of Ag

Questions?