The Impact of Dust and Increased Road Use on Wetlands in Western North Dakota

Jessica Creuzer, Christina Hargiss, Jack Norland, Tom DeSutter, Shawn DeKeyser, Frank Casey, Mike Ell

Objective

- Compare wetlands in areas of increased travel due to energy development with typical gravel road traffic (no energy development)
 - Dust loading
 - Water quality
 - Trace element changes in soil
 - Vegetation differences

How Sites Were Chosen

- Restricted
 Randomization
- 10 High Impact sites
 - Road traffic mainly from energy development
- 10 Low Impact sites
 Typical road traffic
- All sites classified as seasonal

Selected Sites

Quantifying Dust

Quantifying Dust

- Dust collectors set 10m, 40m and 80m from road placed at cardinal directions
 - Collected monthly

 2012 July-October
 - 2013 May-October
 - Samples dried on NDSU campus
 - Samples weighed

Water Quality

- ND Department of Health protocols
- Sampled monthly
 - 2012 July-September
 - 2013 May-September
- On site pH, dissolved oxygen, temperature, conductivity
- Lab analysis Major cations/anions, total suspended solids, total organic carbon, Chlorophyll A/B, trace elements

Soil Sampling

- Soil sampled once a year (2012, 2013)
- Samples collected from 0-0.5 cm and 5-6 cm

- NDSU soil lab for bulk density (BD), pH and electrical conductivity (EC)
- All samples sent to ACME lab for 53 trace element analysis

Index of Plant Community Integrity (IPCI)

- Developed by DeKeyser et al.
 (2003) and Hargiss et al.
 (2008)
- Evaluates health of Prairie
 Pothole Region (PPR) wetlands
 based on the plant community
- Developed for temporary, seasonal, semi-permanent wetlands in the PPR

Low Prairie
Wet Meadow
Shallow Marsh

-

IPCI

- Creates a comprehensive species list
- 9 metric system
- Total score between 0-99
- Condition categories based on final score

North Dakota Rapid Assessment Model (NDRAM)

- Quickly assesses PPR wetlands based on plant and landscape characteristics (Hargiss 2009)
- Approximately 20 minutes to conduct survey
- Final scores on a scale of 0-100
- Groups wetlands based on final score

Hydrogeomorphic Model (HGM)

- Assesses the physical traits and functional characteristics of each wetland
 - Incorporates physical characteristics, land-use information, soil data, biological data, and GPS and GIS information
 - Calculates six Functional Capacity Indices (FCI) for each wetland
 - (Gilbert et al. 2006)

Statistical Analysis of Soil and Water

- Non-metric Multidimensional Scaling (NMS) as the ordination procedure
 - Euclidian for water data
 - Relative Euclidian for soil data
- Multi-Response Permutation Procedure (MRPP) for both water and soil samples
 - Used to test if high impact and low impact and years were different

Plaza

Rainfall Totals (cm) for collection months

Minot

Ross

Preliminary Results: Dust (2012 only)

- Loading at 10m is significantly different (p=0.04)
- Deposition rate ~0.6 lbs/m² per

year

40m and 80m
 not significantly
 different

Preliminary Results: Water

- One axis significant
 - Represents
 99% of
 variation in
 data
- Unclear if dust is affecting water quality

Preliminary Results: Soil

- No significant difference in depth
- Difference in EC and Sulfur
 - Rainfall and landscape
 position likely most
 important factors
- Year impact is more telling than high or low impact or depth

Preliminary Results: IPCI

 There are differences in condition at sites

 Not significant

Preliminary Results: NDRAM

- There are differences in condition at sites
- NDRAM a more subjective measurement of condition

Preliminary Results: HGM

•Low impact sites function better than high impact sites but not significant

•More an effect of sites chosen, not necessarily from dust

Preliminary Results: HGM

- Low impact sites function
 better than high impact sites
 but not significant
- •More an effect of sites chosen, not necessarily from dust

Conclusion

- Preliminary results indicate:
 - Dust is significant only at 10m

- Water quality and soil data most affected by rainfall and landscape position
- Difference of condition and function, but not significant between high and low impact sites
 - Impact of site selection not dust

Moving Forward

Still analyzing data

Final results expected Fall of 2014

- Future research
 - This information provides baseline data
 - Future analysis could indicate change over time
 - Other impacts (dust particle size, element analysis, etc)
 - Focus within 40m distance from road

Acknowledgements

- NDDoH/EPA
- Mike Ell (NDDoH)
- Mike Hargiss (NDDoH)
- Kevin Horsager
- Larry Settler
- Landowners
- State of ND and ND Game & Fish
- Felix Fernando, Zach Sager, Kory Bonnell

Questions???