

State-of-the-art Environmental Modeling for Surface-Subsurface Systems

Xuefeng Chu Department of Civil Engineering North Dakota State University

Part I Windows-Based Integrated Pesticide Transport Model (IPTM)

- Theoretical Background
- Windows-based Software

Pesticide Transport Modeling in the Canopy Zone, Surface Runoff and the Unsaturated Zone

Major processes in Canopy Zone: degradation, volatilization, and washoff

Major processes in Surface Zone: advection, dispersion, sorption, liquid-vapor partitioning, degradation, volatilization, runoff, and erosion.

Major processes in Root Zone: advection, dispersion, sorption, liquid-vapor partitioning, degradation, and root uptake.

Major processes in Vadose Zone: advection, dispersion, sorption, liquid-vapor partitioning, and degradation.

4-Zone System: Canopy Zone, Surface Zone, Crop Root Zone, and Deep Vadose Zone

$$\frac{dM_{STG}(t)}{dt} = m_c(t) - m_{cs}(t) - k_c(t)M_{STG}(t)$$

Mathematical Expressions for Simulating I-D Three-Phase Pesticide Transport in the Unsaturated Zone

TC-SD Semidiscrete Method (Time Continuous & Space Discrete)

Second-Order PDE

$$\frac{\partial}{\partial t} \left[(\theta + \rho K_d + a K_H) C \right] = \frac{\partial}{\partial z} \left[a D_g \frac{\partial}{\partial z} (K_H C) \right] + \frac{\partial}{\partial z} \left[\theta D_l \frac{\partial C}{\partial z} \right]$$
$$- \frac{\partial}{\partial z} (q C) - r_0 C - (\theta + \rho K_d + a K_H) k C + M(z, t)$$
$$C(z, t_0) = C_0(z)$$
$$- E^g \frac{\partial C_g}{\partial z} - E^l \frac{\partial C_l}{\partial z} + q C_l = q C_l^{in} - \frac{D_a}{d} (C_g - C_g^a) \quad \text{For } t > 0 \text{ and } z = 0$$
$$- E^g \frac{\partial C_g}{\partial z} - E^l \frac{\partial C_l}{\partial z} + q C_l = q C_l^{out} \quad \text{For } t > 0 \text{ and } z = L$$

TC-SD Semidiscrete Method

First-Order ODE System

$$\dot{\mathbf{C}}(t) = \mathbf{A}(t)\mathbf{C}(t) + \mathbf{M}(t)$$

Closed-Form Solution

$$\mathbf{C}(t) = \mathbf{\Phi}(t, t_0) \mathbf{C}(t_0) + \int_{t_0}^t \mathbf{\Phi}(t, \tau) \mathbf{M}(\tau) d\tau$$

State Transition Matrix Φ

$$\begin{split} \mathbf{\Phi}(t, t_0) &= \lim_{j \to \infty} \left\{ \mathbf{I} + \sum_{k=0}^{j-1} \int_{t_0}^t \mathbf{A}(\tau_1) \int_{t_0}^{\tau_1} \mathbf{A}(\tau_2) \cdots \int_{t_0}^{\tau_k} \mathbf{A}(\tau_{k+1}) d\tau_{k+1} \cdots d\tau_1 \right\} \\ &= \mathbf{I} + \int_{t_0}^t \mathbf{A}(\tau_1) d\tau_1 + \int_{t_0}^t \mathbf{A}(\tau_1) \left[\int_{t_0}^{\tau_1} \mathbf{A}(\tau_2) d\tau_2 \right] d\tau_1 + \cdots \end{split}$$

$$\mathbf{C}(t) = \mathbf{e}^{\mathbf{A}(t-t_{0,i})} \mathbf{C}(t_{0,i}) + \int_{t_{0,i}}^{t} \mathbf{e}^{\mathbf{A}(t-\tau)} \mathbf{M}(\tau) d\tau$$

For instantaneous application

$$\mathbf{C}(t) = \mathbf{e}^{\mathbf{A}(t-t_{0,i})} \left[\mathbf{C}(t_{0,i}) + \mathbf{m} \right]$$

For continuous application

$$\mathbf{C}(t) = \mathbf{e}^{\mathbf{A}(t-t_{0,i})} \mathbf{C}(t_{0,i}) + \mathbf{A}^{-1} \left[\mathbf{e}^{\mathbf{A}(t-t_{0,i})} - \mathbf{I} \right] \mathbf{m}$$

Solution Methods in IPTM

Two-point first-order upwind scheme Second-order central differencing Multi-point high-order linear upwind-biased schemes Nonlinear van Leer flux limiter

Pesticide Application Methods in IPTM

Over-canopy Under-canopy Combined foliar and soil surface spray Soil-incorporated applications.

Windows-Based IPTM: Integrated Pesticide Transport Modeling System

IPTM-CS:

Three modeling steps – Three major menus (Data, Model, Output)

Menu Output (post-processing)

Menu Parameter-Estimation

Menu Parameter-Estimation

Menu Help

File View Data Model Output Para	meter-Estimation Window	Help		
		Conten	ts	
		IPTM W	'ebsite	
		Docume	ntation	
Help Topics: IPTM-CS Help Contents	<u>? ×</u>	About		
Contents Index Find				
Click a book, and then click Open. Or click another ta	b, such as Index.			
	Help Topics: IPTM-C5 Help Cont	ents		? ×
File	Contents Index Find		I _™ Documentat	ion 🛛 🕅
Data		<mark>r</mark>		
Model	1 I ype the first few letters of the	word you're i	Documentati	on
Parameter Estimation				
Documentation and Support	2 Click the index entry you want,	, and then clic	PDF	Introduction
	2-Year, 24-Hour Rainfall AC		Adobe	
	Air Boundary Layer Thicknes: AMC	s	PDF	User's Manual
	AP Application Date		Adobe	
	Application Depth			Reference Paper 1: Chu, Xuefeng and M. A.
	Application Times		Adobe	Marino. 2004. J. Hydrol. 285:19-40.
	BAS BD			Paterona Paras 2 Chu Vustana and MA
Open	Bulk Density Canopy Decay Rate		PDF	Merence Paper 2: Chu, Xuereng and M.A. Marino. 2006. J. Environ Engng, ASCE.
	Canopy-Soil Application Partit	ion Factor	Adobe	132(2):211-219.
	Central Differencing		PDF	Reference Paper 3: Chu, Xuefeng and M.A. Marine, 2007, Emirron, Model, Softru
	JUNECK		Adobe	22(9):1316-1327.
		Display	,1 .,	
				Close

Application - Study Area and Location

Section Map and Areas

 Orestimba Creek Basin (ORE): 13 sections, 33,670,000 m²

Central California
Irrigation District
(CCID): 22 sections,
56,980,000 m²

Coast Ranges (CR): 164 sections, 424,760,000 m²

➤Total 199 sections

Simulation Period

1/1/1996 - 12/31/1997 (731 days)

Pesticide Applications Pesticide: diazinon 24 diazinon-applied sections

Crops

Almond and walnut (orchard crops), and tomatoes, beans, and alfalfa (vegetable, field, or pasture crops).

Soils

Clay loam, loam, and sandy loam are three major soil types

Diazinon in the Subsurface Environment

- The combined timing of pesticide application and rainfall/irrigation dominates the exposure levels of diazinon in the subsurface environment
- In the deeper soil, diazinon peaks generally follow the heavy rainfall season (end of January or early February).
- Diazinon concentrations decrease rapidly along the soil profile and contamination is limited within the soil less than 1 m.

Diazinon in the Creek (at the Outlet)

Diazinon in the Orestimba Creek Basin frequently exceeds criteria for aquatic life (0.08 μ g/L). Worse of all, diazinon concentrations even exceed the human-health criterion (0.6 μ g/L). Such high peak pulses may last up to a half month..

Part II Tracer (Br) Transport under the Influence of Surface Microtopography

Smooth vs. Rough Soil Surfaces Tracer Sampling Locations

Windows-based P2P Modeling System Puddle Delineation Tool

P2P Model Wizard	
Welcome Inputs Run PD and P2P Models Outputs Finish	Welcome to the P2P System
	Please click the following button to create a new project
Save	< Back Next > Cancel

Puddle Delineation

Three mini-basins delineated for the rough soil surface

Puddle Delineation – Flow Accumulations

Smooth Surface

Rough Surface

Hydrograph and Chemograph

The smooth surface had earlier and greater contributions of both runoff water and tracer than the rough surface. An increase in surface roughness (microtopography) significantly reduced the tracer loading at the outlet and delayed the occurrence of tracer concentration peaks.

Overland flow and tracer transport on the rough soil surface featuring a variety of depressions exhibited a threshold behavior affected by surface microtopography.

Smooth Soil Surface: Spatial Distributions of Br Concentrations in soil

D=4 cm

D=8 cm

Close correlations between the tracer spatial distribution in soil and surface microtopography were identified. The discrepancy in tracer levels and distributions in the subsurface system can be attributed primarily to the effect of surface microtopography on the infiltration and tracer leaching processes.

Rough Soil Surface: Spatial Distributions of Br Concentrations in soil

D=4 cm

D=8 cm

Microtopography-controlled preferential flow under the centers of surface depressions transported more solute into deep soil, which led to higher concentrations in deep soil under the depressions

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. EAR-0907588 and USEPA Center for Ecological Health Research (CEHR)

- Dr. Miguel Marino, Distinguished Professor, UC Davis
- Ms. Jessica Higgins, Grand Valley State University
- Dr. Richard Rediske, Grand Valley State University
- Dr. Jianli Zhang (postdoc) and all graduate students in my research group.

Thank You!

2012 North Dakota Water Quality Monitoring Conference February 29, 2012