Establishing State-Wide Nutrient Criteria Using a Stochastic Modeling Approach

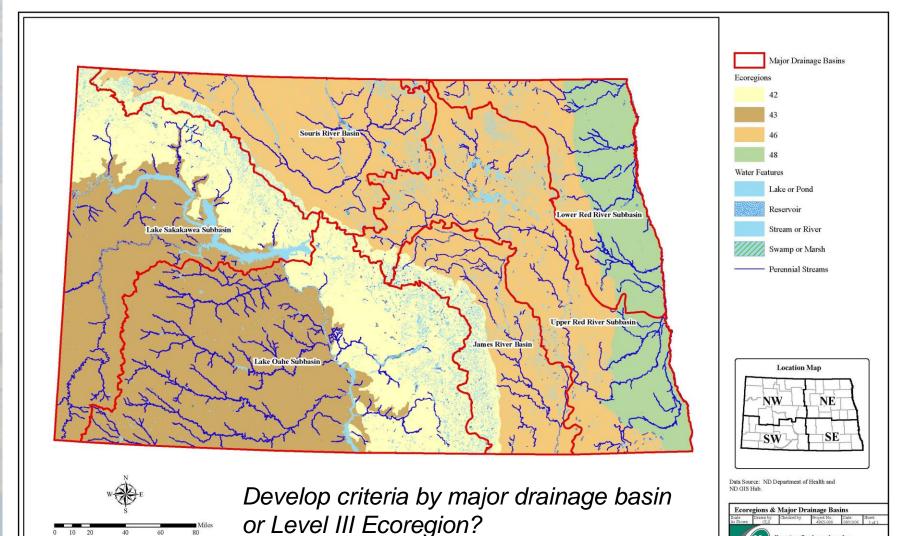
Mark R. Deutschman, Ph.D., P.E. Stephanie Johnson, Ph.D., P.E. Michael J. Ell

2012 North Dakota Water Quality Monitoring Council Bismarck, North Dakota

Presentation Outline

- Criteria development in ND
- Nutrient criteria development
 - Classification of lakes and reservoirs
 - Model development
 - Products for setting criteria
- Next steps for setting nutrient criteria
- Lessons learned

Background for Nutrient Criteria Development


- EPA working with all states to develop nutrient criteria for protecting streams, lakes and wetlands
 - North Dakota within EPA Region 8
- Numeric Standards N.D. Administrative Code 33-16
 - Total TP Restoration Goal = 20 ppb

This work began when the restoration goal established by the NDAC was 100 ppb total phosphorus

North Dakota Used a Road Map to Begin Criteria Development

- Prepared Implementation Plan (2007)
- ND is lacking information for "reference" conditions
 - Existing data lacks in abundance and distribution
 - Consider regional modeling
- Recommended:
 - First lentic (non-flowing), then lotic (flowing), systems; address wetlands separately
 - Stratify criteria by hydrologic planning regions before using ecoregions

North Dakota Used a Road Map to Begin Criteria Development

Houston Engineering, Inc. Leave Nothing to Chance^{7M}

State-wide Classification of Lentic Systems was Critical First Step

- Must determine which water bodies are lakes? reservoirs? or wetlands?
- Lake and reservoir classes must be further divided into sub-classes (181,000 lentic water bodies)
 - Must reflect how system will respond to environmental conditions
- Considered 11 metrics (mixing characteristics, morphoedaphic index, residence time, morphometry)
- Established four sub-classes for lakes and reservoirs

Description of Physical Data for Classes

Lakes

- Minimum 10 acres
- Max depth > 1 meter
- Minimum open water area of 1000 sq. meters
- No dam

Defined from NHD, NWI, ND G&F

Reservoirs

- Some water control structure
- "Short" residence
 time

es	Assigned Class	Average Surface Area	Average Volume	Average Drainage Area
		(acres)	(ac-ft)	(sq.mi.)
00	LAKES (n=10,335)			
00	I	74.1	575.9	13.8
-	II	156.8	1,770.8	12.9
		364.3	4,444.3	16.6
	IV	1,203.5	68,204.0	80.2
	RESERVOIRS (n=687)			
	I	86.2	637.8	70.0
trol	Ш	279.6	2,760.1	144.8
		1,613.0	19,741.5	1,167.9
e	IV	1,542.7	28,570.0	472.2

Classifying metric = (SA / DA) * VOL

General Approach to Setting Lentic Criteria

- Developed regional watershed model for loads and runoff
- Linked regional watershed model to regional lake and reservoir models to:
 - Establish "current" conditions based on land use
 - Adjust land use parameters to assess what a potential "reference" condition may demonstrate
- Chose Upper Red River Basin as pilot area for developing regional model

North Dakota Nutrient Criteria Pilot Area – Upper Red River Basin

URRB statistics □ 13,420 Square Miles Grafton \odot Minot Williston Devils □ 309 12-digit **Grand Forks HUC** basins □ 2,085 Lakes, 183.97 sq mi Dickinson Jamestown West Fargo Fargo **Bismarck Mandan** Valley City (excludes **Devils Lake**) Wahpeton □ 46 Reservoirs, 33.73 sq mi Major Cities N Upper Red River Planning Region Project Location: 20 40 80 Counties Upper Red River Planning Region ND GIS Hut

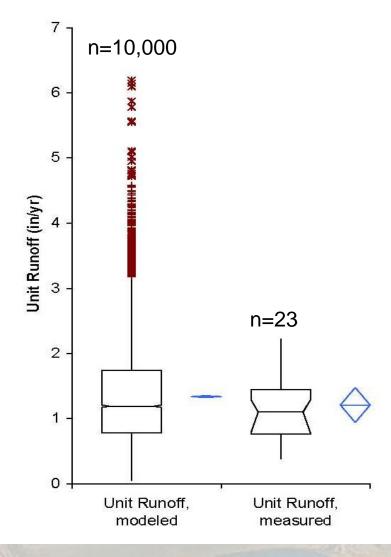
Implementation of Stochastic Modeling Approach

- Define model inputs with probability distributions
 - Receiving water: Surface areas, drainage areas, volumes
 - Landscape: Curve numbers by land use, total phosphorus
 event mean concentrations, precipitation depths
- Integrated into CNET model (W.W. Walker)
 - BATHTUB foundation
 - Spreadsheet based
 - Quickly evaluate multiple scenarios with same inputs across classes

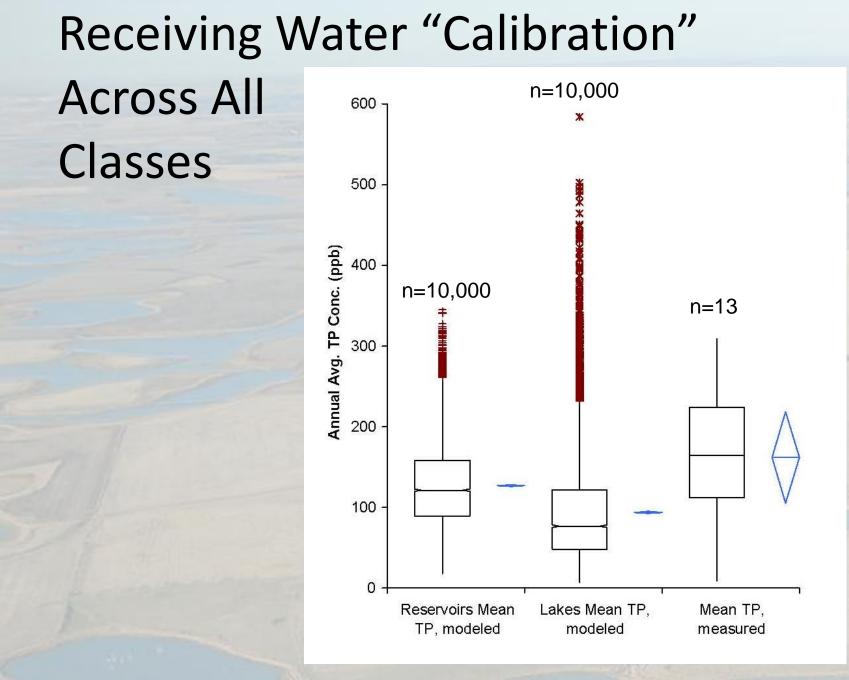
Building Watershed Inputs

- Defined 5 land uses
 - Agricultural, Forest, Grassland/Shrub/Wet land, Water, Urban
- Sub-sampled 89
 HUC's in pilot area
- GIS analysis to determine soils and land use
- Assigned probabilities to curve numbers for each land use

Location Map

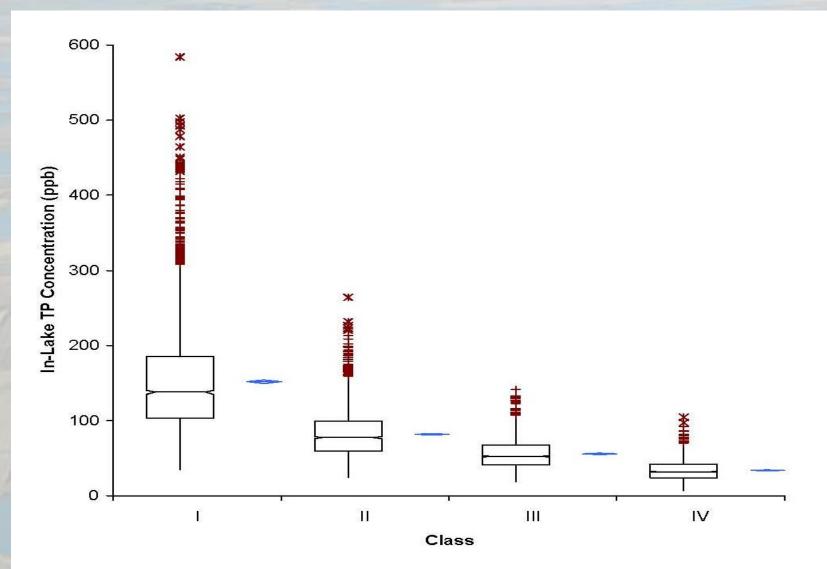


Modifications to CNET Model

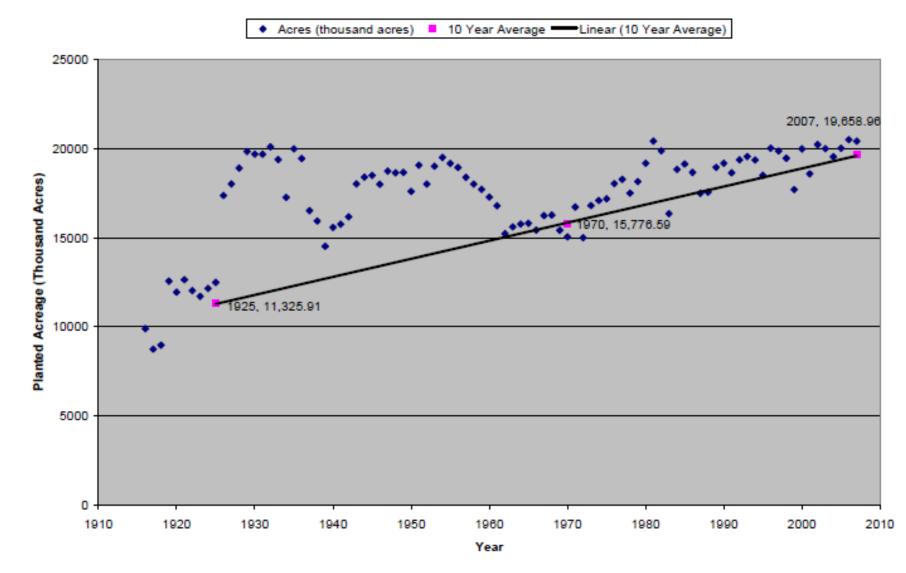

- Altered "annual" time-step for runoff input
- Computed daily runoff volumes and loads
- Ensure spatial consistency
- Secchi and Chl-a models in CNET not entirely reliable (yet)

Runoff "Calibration"

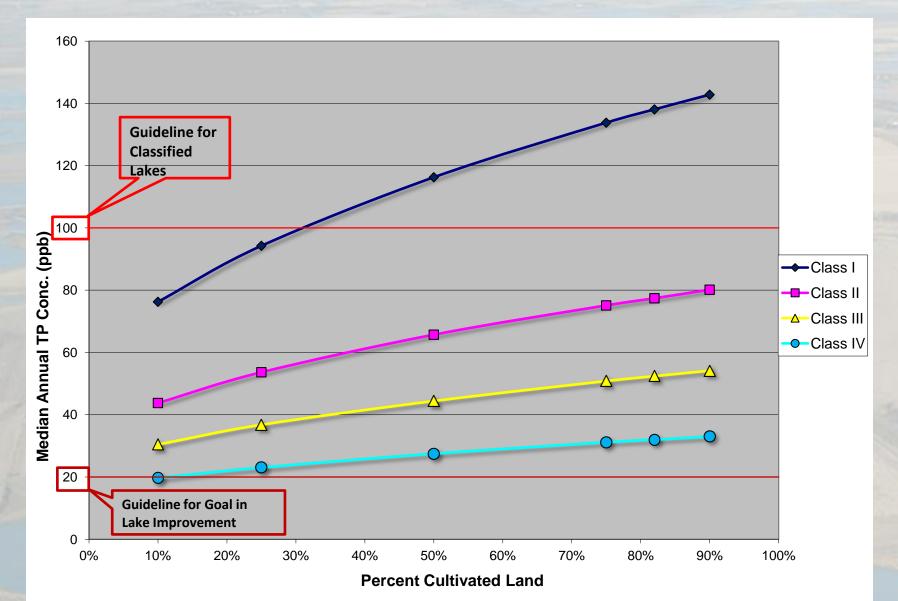
Represents current land use conditions in the URRB (82% cultivated land)



Represents current land use conditions in the URRB (82% cultivated land)


Stochastic Model Outputs

- Existing conditions lake and reservoir response by class
- Use model results to establish possible "reference" or "benchmark" condition
 - Need "benchmark" TP load
 - Watershed model relates TP load to proportion of land cultivated
 - Proportion of land cultivated is tangible / observable


Lake Classes and TP Conc.

North Dakota Cultivated Crop Trend

Lake Response by Class

Conclusions

- Model showed distinct differences between classes
- Model showed potential regional targets for criteria, bounded by ranges
- Need more data to refine model
- Caveats
 - Might appear that some lakes are currently not degraded by water quality (100 ppb standard)
 - Might appear that some lakes may not meet improvement (20 ppb goal)

Lessons Learned

- Lack of data is key issue
- Stochastic approach was valuable
 - Addressed gaps in data
 - Physical lake / reservoir characteristics
 - Water column concentrations
 - Multiple scenarios and trials evaluated simultaneously streamlined effort
 - Incorporated uncertainty across range of landscape / environmental conditions

Next Steps

- More data collection
- Policy decisions to assess acceptable thresholds for eutrophication
- Model refinements and further progress beyond pilot area

Establishing State-Wide Nutrient Criteria Using a Stochastic Modeling Approach

Thank you!