

James RiverWatch

By: Jordan Andrud, Amanda Bitz, Sadie Cochrane, Trinity Potts, and Andrea Watkins of LaMoure High School

Introduction

RiverWatch

- Allows students to monitor water quality
- This is our 2nd year in the program
- Our first year monitoring the James River

James River

- Made up of the runoff of many streams and creeks in the area.
- Begins in Wells County, about 10 miles northwest of Fessenden, North Dakota.
- Ends in Yankton, South Dakota, where it runs into the Missouri River.
- Approximately 710 miles long and drains an area of about 20,653 square miles.
- The river plays a large role in the drainage of eastern ND and SD.

James River Watershed

- To see if water quality is affected by our local dam and the confluence with Cottonwood creek between sites.
 - To see if our data/results is affected by the water level of the James.

Map of Sites

Site B

78TH St.SE

5125

HE

G

102 ND AV

79TH St SE

5

s Se

OJEO!

79TH St SE-

Why Did We Choose These Sites?

- Easily accessible
 Good bridges from which to sample
- Chose sites upstream and downstream of the dam
- Chose sites upstream and downstream of the confluence of the James River and Cottonwood Creek

- Every two weeks we calibrated our YSI Sonde and turbidimeter just prior to sampling.
- We visited each of the three sites, sampling and recording data. We measured temperature, turbidity, pH, dissolved oxygen, and specific conductivity.

2011 River Levels

2011 USGS (06470500) James River at LaMoure Gage Height vs. Average

2011 River Discharge

2011 USGS (06470500) James River at LaMoure Discharge vs. Average

Different organisms prefer different temperature ranges. Generally, water temperatures are expected to be between 5 and 25 °C.

Moderately low levels of turbidity are ideal, but exactly what a moderate level is in North Dakota is debatable.

1.0 20

between 5 and 9 are safe for most species.

A healthy range for percent of dissolved oxygen is around 90-100%. These odd measurements may be because of calibration errors.

Optimal levels of dissolved oxygen are between 7 and 9 mg/L.

	Description	GPS North	GPS West
Site A	James River, Upstream of La Moure (site furthest upstream)	N 46°22.272	W 098°18.602
Site B	James River, Downstream of La Moure, La Moure Dam, and USGS Station	N 46°16.973'	W 098°14.469'
Site C	James River, Downstream of confluence with Cottonwood Creek (site furthest downstream)	N 46°14.419'	W 098°16.159

Date	Site (Date Sampled)	Temperature (°C)	Specific Conductivity (mS/cm)	% Dissolved Oxygen	Dissolved Oxygen (mg/L)	pН	Turbidity (NTU)	Gage Height (ft)*	Discharge (ft' /s)*
9/6/2011	Site A	20.42	0.577	101.2	9.10	7.91	26.8	11.64	2600
9/6/2011	Site B	20.09	0.582	101.0	9.13	7.86	42.1		
9/6/2011	Site C	19.82	0.586	99.1	9.01	7.67	41.2		
9/22/2011	Site A	15.03	0.624	928	9.35	7.67	27.3	11.74	2660
9/22/2011	Site B	15.31	0.627	94.7	9.48	7.81	37.7		
9/22/2011	Site C	15.18	0.629	95.2	9.56	7.87	38.5		
10/5/2011	Site A	16.35	0.596	91.0	8.91	8.01	28.8	11.72	2670
10/5/2011	Site B	16.53	0.597	103.1	10.70	8.18	55.9		
10/5/2011	Site C	16.54	0.599	98.9	9.65	8.18	48.1		
10/18/2011	Site A	10.58	0.649	112.2	12.49	8.06	30.1	11.74	2680
10/18/2011	Site B	10.34	0.643	118.5	13.40	8.22	36.0		
10/18/2011	Site C	10.07	0.640	116.1	13.10	8.33	37.9		
11/3/2011	Site A	6.88	0.735	46.5	5.68	7.99	47.9	9.88	1510
11/3/2011	Site B	6.58	0.729	56.1	6.91	7.94	58.3		
11/3/2011	Site C	6.41	0.727	56.0	6.90	8.10	52.0		
11/17/2011	Site A	0.72	0.770	36.3	5.19	8.25	26.8	8.95	774
11/17/2011	Site B	0.48	0.775	37.6	5.40	8.21	29.6		
11/17/2011	Site C	0.29	0.776	40.5	5.85	8.43	29.0		

•

*Data for River Height and Discharge taken from USGS site on James River at La Moure for that date

B. a.N.

1.1

- Water levels were very high throughout summer and early fall, but went down in late fall and winter
- As water levels dropped, specific conductivity rose
- pH is within an optimal range
 - Turbidity seems normal for ND rivers
- The dissolved oxygen measures vary significantly, possibly due to equipment error.

- After examining and analyzing our data, we have concluded that the water quality did not change significantly as it interacted with the dam and tributary.
- What we did find is that water levels do affect our water quality. Some trends we found as the water levels receded are that:
 - specific conductivity rose
 - dissolved oxygen dropped
 - pH remained in an optimal level

Bibliography

- DeLorme, Andre. "RiverWatch Training." RiverWatch Fall Conference. Prairie Waters Education and Research Center. Kathryn, N.D.. 27 Oct 2011. Lecture.
- "Geology.com." North Dakota State Map Collection. Geology.com, n.d. Web. 07 Oct 2011. http://geology.com/state-map/north-dakota.shtml.
- Murdoch, Tom, Martha Cheo, and Kate O'Laughlin. Streamkeeper's Field Guide. 1st ed. Everett, WA: The Adopt-A-Stream Foundataion, 1991. 164-182. Print.
- North Dakota Data Support Team, . "James River at LaMoure, ND." USGS Water Resources. USGS, 21 002 2012. Web. 21 Feb 2012.

Special Thanks

- This project was made possible by a grant from the
- Environmental Protection Agency, the North Dakota
- Department of Health, and the Prairie Waters Education and
- Research Center. We appreciate the opportunity they have
- given us.