UNIVERSITY OF NORTH DAKOTA

Ultrasensitive Hg²⁺ detection based on the T-Hg²⁺-T base mismatch

Jiao Chen, Xu Wu, Julia Xiaojun Zhao* Department of Chemistry

INNOVATIVE ENTREPRENEURI

SPIRIT

Mercury is a notoriously toxic element: accumulate in vital organs and tissues.

* Total mercury released into the environment reaches to **7500 tons** per year.

Since **1990**, the North Dakota Department of Health has obtained mercury data for many fish species found in the state's lakes and rivers.

NOTE: Alaska and Hawaii are not to scale

```
Source: Environmental
Integrity Project
Graphic: Pat Carr
```


- **♦** The maximum allowable level of mercury in drinking water is **10 nM**.
- Current applied instruments are expensive and time-consuming, such as AAS/AES, ICP-MS.
- It's extremely desirable to develop a highly sensitive, selective, and practical sensor to monitor mercury pollution.

► Let DNA do the Hg²⁺ detection job!

The Formation of T-Hg²⁺-T Mismatch

• The Hg(11)-mediated 1-1 base pair (1-Hg²⁺-1) is at least as stable as normal Watson-Crick base pairs.

Rolling Circle Amplification (RCA)

- RCA is a simple enzymatic process that can generate very long sing-strand DNA (ssDNA) with tandem repeats.
- A primer DNA first anneals to a circular DNA template.
- The added DNA polymerase extends the primer continuously around the circular DNA generating a long DNA product that consists of many repeated copies of the circle.

3. Signal detection

Proof of Concept Experiment

Sensing strategy of the Hg²⁺ detection using the molecular beacon.

Figure 1. Fluorescence intensity of the sensor response to Hg^{2+} with the time. (a) the solution containing 10 nM MB and 200 nM assistant probe; (b) the addition of 300 nM Hg^{2+} into (a). Excitation: 480 nm, Emission:518 nm.

Optimization of sensor conditions

Figure 2. Fluorescence intensity of the sensor at different concentration of assistant probe. F: fluorescence intensity of the sensor in the presence of the 300 nM Hg²⁺; F_0 : fluorescence intensity of the sensor in the absence of the Hg²⁺. MB: 10 nM.

Figure 3. Fluorescence intensity of the sensor at different temperature. F: fluorescence intensity of the sensor in the presence of the 300 nM Hg²⁺; F_0 : fluorescence intensity of the sensor in the absence of the Hg²⁺. MB: 10 nM; assistant probe: 200 nM.

Sensitivity investigation

Figure 4. Changes of the fluorescence spectra of the sensor system with different concentrations of Hg²⁺. The inset is the calibration curve of the sensor system to the detection of Hg²⁺.

Selectivity investigation

Figure 5. The fluorescence intensity of the sensor system with addition of other metal ions. Concentration of Hg²⁺: 200 nM; concentration of other metal ions: 1000 nM.

Conclusions

• Molecular beacon/T-Hg²⁺-T based Hg²⁺ sensor shows high selectivity and sensitivity (LOD = 8.3 nM).

- Detection limit can go down as low as 8.3 nM even without any signal magnification process.
- By applying the enzymatic process of RCA, a sensor with much lower LOD is expected.

Thank you! Questions?

