Source tracking of *Cryptosporidium* in the Red River Valley

Brianna Schneck Stenger, Christopher Pennil, Vince Lanctot, Mark Clark, Catherine Giddings, John McEvoy North Dakota State University Dept. of Veterinary and Microbiology Sciences Dept. of Biological Sciences Environmental and Conservation Sciences Program

Genus Cryptosporidium aka "Crypto"

- 60+ types
- Ubiquitous
 - Humans, livestock, wildlife, water, soil
- May cause Cryptosporidiosis
- Host adaptation
 - C. andersoni
- Fecal-oral route

(Xiao & Ryan 2008, Cryptosporidium and Cryptosporidiosis; Fayer 2004, Vet. Paras; Xiao et al. 2004, Int. J. for Paras.)

Transmission

Objectives

• 1. Determine the types of *Cryptosporidium* in the Red River and its tributaries

• 2. Determine which host(s) may contribute to *Cryptosporidium* contamination

• 3. Estimate number of oocysts in flood water

Methods: Animal Samples

- Live trap small mammals or sample "cow pie"
- Scare the "crap" out of the animals
- Extract DNA from feces

Methods: Water Samples

- 20L water thru Envirochek[®] HV filters
- Immunomagnetic Separation (IMS)
 EPA Method 1622/1623
- Slides for counting oocysts
 - Immunofluorescent assay
- Freeze-thaw DNA extraction

Methods

- PCR: 18S rRNA gene
- Sequence to identify the Crypto
- Slides to enumerate oocysts

Objective 1: Determine the types of *Cryptosporidium* in the Red River and its tributaries

Objective 1: Determine the types of Cryptosporidium in the Red River and its tributaries

Buffalo River in 2007-08

20/28 (71%)
 –Over half *C. andersoni* –Also *C. ubiquitum, C. parvum,* vole genotype, muskrat I genotype

2009 Flood

- ***** 9/13 (69%)
 - 7 C. andersoni
 - 1 C. suis
 - 1. DM genotype III

2010 Flood

- 14/17 (82%)
 - 1 W12 genotype
 - 3 C. andersoni

Objective 2: Determine which host(s) may contribute

to Cryptosporidium contamination

Host	Cryptosporidium
Northern short-tailed shrew	muskrat I genotype, shrew genotype
Southern red-backed vole	muskrat I genotype, muskrat II genotype, fox genotype
Peromyscus spp.	<i>C. ubiquitum, C. parvum,</i> deer mouse genotype, deer mouse III genotype, muskrat II genotype
Grey squirrel	<i>C. parvum, C. ubiquitum,</i> skunk genotype, Deer mouse III genotype
Fox squirrel	C. ubiquitum
Red squirrel	C. parvum, C. ubiquitum, skunk genotype
Meadow vole	<pre>muskrat I genotype, muskrat II genotype, vole genotype, fox genotype, W12 genotype, C. parvum</pre>

Objective 2: Determine which host(s) may contribute to *Cryptosporidium* contamination

Small Mammals

- ✤ 30/42 (71%) along the Buffalo River
- ✤ 60/148 (41%) near the Red River
- ✤ 36/108 (33%) along the Red River

Livestock

- C. andersoni is host-adapted to cattle
 - -Calves can be infected with *C. parvum*
- C. suis is host-adapted to pigs

<u>Results</u>

Objective 3: Estimate number of oocysts in flood water

2010 Flood

Estimated the flow of oocysts at 728,000 per second during peak flooding based on an approximate flow of 560,000L per second (USGS)

Averaged 1.3 oocysts/liter during the crest and .3 oocysts/liter one week after the crest

Take Home

- Cryptosporidium is everywhere

 many different types
- Livestock largely contributed to Cryptosporidium in the water systems, but wildlife also played a role
- Generally, the *Cryptosporidium* found in the water are not a concern to human health

 Caution with *C. parvum* and *C. ubiquitum*

Acknowledgments

- Dr. John McEvoy, co-advisor
- Dr. Mark Clark, co-advisor
- Committee members Dr. Reed and Dr. Khaitsa
- Cathy Giddings
- Tanush Wadhawan and various undergrad/graduate students

Funding

- USDA National Research Initiative
- ND Water Resources Research Institute Fellowship

Questions/Comments

