Wetland Assessment and Ecosystem Services

Lindsey Meyers, Shawn DeKeyser, Jack Norland, Christina Hargiss, and Tom DeSutter

North Dakota Water Quality Monitoring Conference, 2012, Bismarck, ND

Outline

Introduction

- Wetland Ecosystem Services
- Wetland Assessments

Methods

- National Wetland Condition Assessment (NWCA)
- Regional Methods
 - Index of Plant Community Integrity (IPCI)
 - North Dakota Rapid Assessment Method (NDRAM)
 - Hydrogeomorphic (HGM) Model
- Plant and Soil Samples
 Preliminary Results
 - IPCI
 - NDRAM

Future Analyses

Wetland Ecosystem Services

Introduction

Improved water quality Groundwater replenishment Habitat for fish, wildlife, and plant species Floodwater storage Nutrient cycling **Recreational and** educational opportunities

Introduction Wetland Assessments

Provide current wetland condition

Identify major stressors

Are tools for monitoring over time

Methods

Summer of 2011

- 55 sites across North Dakota
- Assessments:
 - National Wetland Condition Assessment (NWCA)
 - Index of Plant Community Integrity (IPCI)
 - North Dakota Rapid Assessment (NDRAM)
 - Hydrogeomorphic (HGM) Model
 - Other samples:
 - Plant
 - Soil

Study Sites

Used nation-wide Wetlands are diverse in type ND wetlands Many temporary and seasonal Many with little to no tree species Characterization of the wetland buffer, vegetation, soils, hydrology, water quality, algae, and a rapid assessment

Buffer plots

- 13 buffer plots
- Vegetative cover
- Stressors
- Alien species

Vegetation plots

- Five 100-m² plots
- Plant species
 - Cover
 - Height classes
- Diameter measurements
 - Live tree species
 - Standing dead trees

Soil pits

- 4 pits
- Soil profile
- Physical characteristics
- Hydric soil indicators
 Representative pit
 - Most representative of the 4
 - Nitrogen isotope samples
 - Sediment enzyme samples
 - Bulk density samples
 - Soil chemistry samples

• Hydrology

- Water sources
- Hydrology indicators
- Hydrology stressors

• Water quality

- Wetlands with surface water > 15 cm deep
- Surface water characteristics
- Water chemistry samples
- Surface water field probe readings
 - Dissolved oxygen
 - pH
 - Conductivity
 - Water temperature

Algae samples

- Substrate samples for algae taxonomic ID
- Water > 15 cm deep
 - Chlorophyll-a
 - Epiphyte algae samples (aquatic vegetation) or surface water for algal toxins sample

USA-RAM

U.S. Rapid Assessment Method

- Buffer characteristics
 - Buffer width
 - Buffer stressors
- Physical and biological structure
 - Topography
 - Plant community complexity
- Stressors
 - Alterations to wetland
 - Invasive plant species
 - Vegetative disturbance

Regional Methods

 Index of Plant Community Integrity (IPCI)
 North Dakota Rapid Assessment (NDRAM)
 Hydrogeomorphic (HGM) Model

Plant and Soil Samples

3 landscape positions

- Mid-slope
- Wet meadow
- Shallow marsh

Plant Samples

Clipped five 0.25-m² quadrats by type of vegetation at each landscape position

- Warm season grasses
- Cool season grasses
- Sedges and rushes
- Forbs and shrubs
- Cattails

 Weighed for biomass
 Phosphorus, Nitrogen, and Carbon nutrient analysis

Soil Samples

- Samples for Phosphorus and Mercury content
 - Collected at the same 3 landscape positions
 Six 500 g soil cores at each position
 - Three from 0-15 cm
 - Three from 15-30 cm

Preliminary Results **IPCI**

	Seasonal	
Very good	4	
Good	6	
Fair	6	
Poor	4	
Very poor	3	
Total	Total 23	

	Temporary*	Semi- permanent**	
Good	2	8	
Fair	2	9	
Poor	0	11	
Total	4	28	

*2 are riparian, 1 is a fen **2 are riparian, many are permanent and edges of shallow lakes

Preliminary Results **NDRAM**

	Temporary*	Seasonal	Semi- permanent**
Good	2	6	8
Fair High	0	5	12
Fair Low	2	6	7
Poor	0	6	1
Total	4	23	28

*2 are riparian, 1 is a fen **2 are riparian, many are permanent and edges of shallow lakes

Future Analyses

- Comparison of wetland assessment methods
 Modeling of wetland assessment, land use, and/or nutrient pools
 Comparisons of how & where nutrients are stored in different wetlands
 Analysis of ecosystem services
 - Vegetation
 - Nutrient cycling

Acknowledgements

- Funding for this project provided by the ND Department of Health, EPA, and ND Water Resources Research Institute
- Thanks to my advisors Shawn DeKeyser and Jack Norland
- Thanks to Christina Hargiss and Tom DeSutter
- Thanks to ND Department of Health and NRCS
- Thanks to many students: Matt Stasica, Jess Meissner, Patrick Corrigan, Eva Sebesta, and Levi Scheff

Questions?

Literature Cited

- U.S. Environmental Protection Agency. 2011. National Wetland Condition Assessment: Field Operations Manual. EPA-843-R-10-001. U.S. Environmental Protection Agency, Washington, D.C.
- 2. Dekeyser et al. 2003. An index of plant community integrity: development of the methodology for assessing prairie wetland plant communities. Ecological Indicators 3, 119-133.
- Hargiss. 2009. Estimating wetland quality for the Missouri Coteau ecoregion in North Dakota. Ph.D. Dissertation. North Dakota State University, Fargo, ND.
- Gilbert et al. 2006. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Prairie Potholes. US Army Corps of Engineers, Omaha, NE.