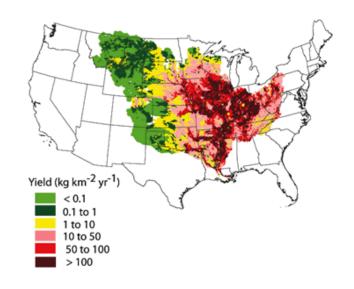


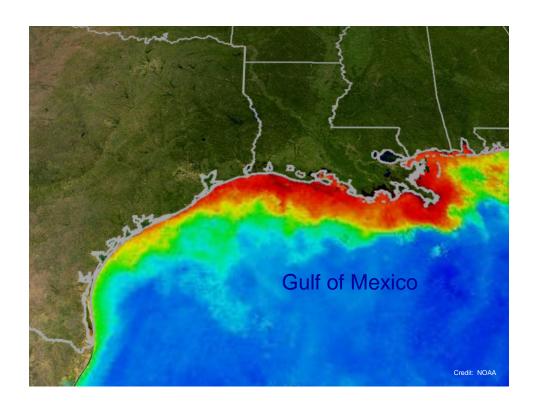
North Dakota's Nutrient Reduction Strategy

Stakeholder Meeting

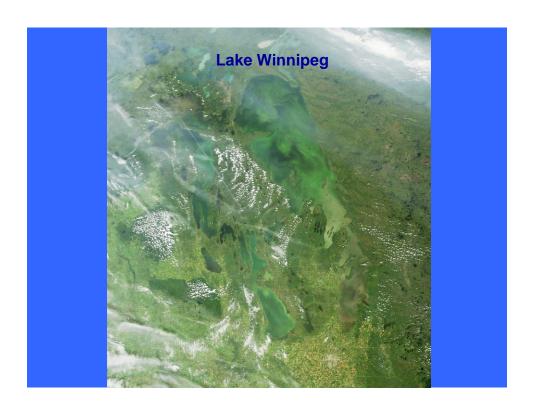
December 19, 2013



National Scope of Nutrient Pollution


- >99,000 river miles threatened or impaired;
- >3 million lake acres threatened/impaired;
- 78% of assessed coastal waters exhibit signs of eutrophication;
- Drinking water violations have increased in recent years because of high levels of nitrate-nitrogen; and
- The occurrence and severity of nuisance algal blooms are on the rise nationwide.

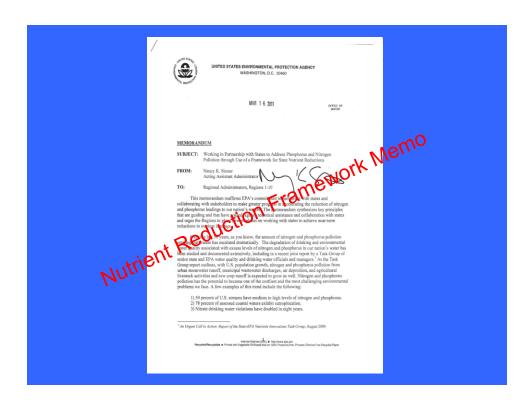
Phosphorus delivered to the Gulf of Mexico



What is EPA doing to help address nutrient pollution?

- 1. Providing states with technical assistance and other resources to help develop water quality criteria for N and P;
- 2. Working with states to identify waters impaired by nutrients and developing restoration plans;
- 3. Awarding grants to states to address pollution from nonpoint sources, such as agriculture and storm water runoff:

What is EFA doing to help address nutrient pollution?


- Administering a permit program to reduce the amount of N and P discharged to the environment from point sources;
- Providing funding for the construction and upgrade of municipal wastewater treatment plants;
- 6. Working with states to reduce nitrogen oxide emissions from air sources;

What is EPA doing to help address nutrient pollution?

- 7. Improving collaboration with states, federal partners (e.g., USDA) and other stakeholders; and
- 8. Increasing efforts to educate the public.

Nutrient Pollution: A North Dakota and Regional Perspective

Presented to the North Dakota Nutrient Reduction Strategy Stakeholder Meeting December 19, 2013

Nutrients

- Nutrients, in appropriate amounts, are essential to the growth and health of aquatic communities
- Excess nutrients, however, can result in:
 - Proliferation of blue-green algae blooms which can cause toxins (cyanotoxicity)
 - Excessive algae and/or plant growth resulting in organic enrichment, low DO and fish kills
 - Excessive algae and plants can cause diurnal low DO or high pH
 - Increased drinking water treatment costs
 - Disinfection by-products concerns
 - Recreation impairments and aesthetics
 - Groundwater contamination (nitrates)

Are nutrients a problem in North Dakota?

- Monitoring and Assessment Programs and Projects Related to Nutrients
- Results for North Dakota Lakes and Reservoirs
- Results for Rivers and Streams

Water Quality Monitoring and Assessment Programs, Projects and Studies

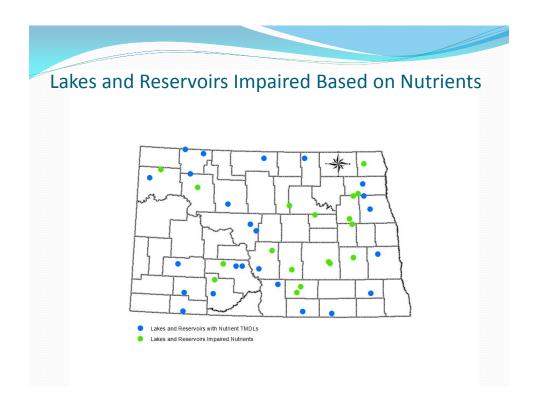
- Ambient Water Quality Monitoring Network for Rivers and Streams
- Biological Monitoring and Assessment Program for Rivers and Streams
 - Ecoregion Reference Station Network
- Lake Water Quality Assessment Program
 - · Small lakes and reservoirs monitoring
 - Lake Sakakawea
 - Devils Lake
- Impaired Waterbody Monitoring/TMDL Development Program
- Nonpoint Source Pollution Management Program Monitoring
 - Assessment and Planning
 - Implementation Monitoring

Water Quality Monitoring and Assessment Programs, Projects and Studies

- EPA National Aquatic Resource Survey Collaborations
 - Environmental Monitoring and Assessment Project Western Pilot Project - 2000
 - National Lakes Assessment 2007 and 2012
 - National River and Streams Survey -2007/2008
 - National Wetland Condition Assessment 2011
- Ecological Assessment of Perennial, Wadable Streams in Red River Basin: North Dakota – 2005-2007

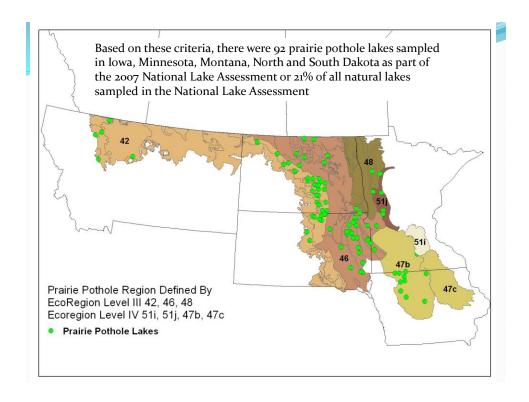
Lakes and Reservoirs

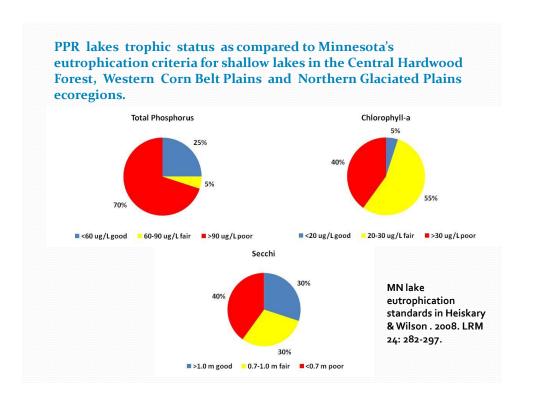
- Lake Water Quality Assessments
- Trophic Status Indicators
 - 20 ug/L chlorophyll-a average concentration
 - Secchi disk transparency
- Low dissolved oxygen concentrations
- Fish kills



Lake Josephine Algal Bloom

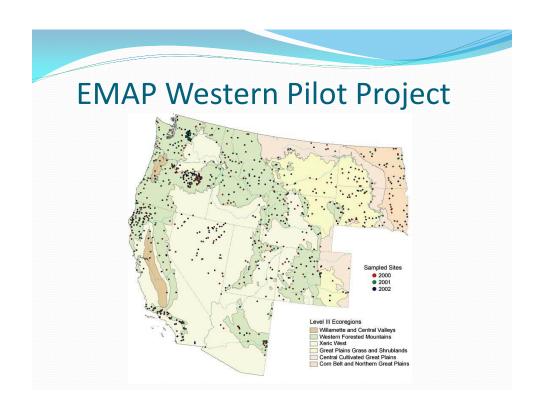
Lakes and Reservoirs


- Currently, 42 lakes and reservoirs assessed as impaired or threatened due to nutrients
 - 24 with a nutrient TMDL written



2007 National Lake Survey Results Prairie Pothole Lake Assessment

North Dakota Rivers and Streams Assessment Results

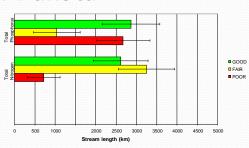

- Based on biological and chemical monitoring data
- As reported in the 2012 Integrated Report
 - Section 305(b) report
 - Section 303(d) list of impaired waters needing TMDLs
- Currently lack direct indicators of nutrient impairment (i.e., no nutrient criteria)
- 51 river and stream segments (1,400 stream miles) listed for biological impairments, some due to nutrients
- Other indicators related to nutrients

Impairment Summary for Rivers and Streams in North Dakota

Impairment	Miles
Total Fecal Coliform/E. coli	5,667.85
Physical Habitat Alterations	2,422.71
Sedimentation/Siltation	1,783.11
Biological Indicators	1,419.86
Oxygen Depletion	453.67

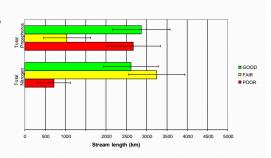
Probabilistic Survey Results

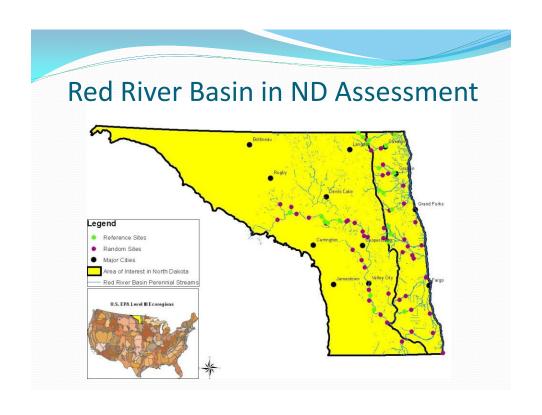
- Based on randomly selected sites
- Condition class estimates based on "reference sites"
- Provides unbiased estimates of ecological condition and extent of stressor (e.g., nutrients) effects
- EMAP Western Pilot Project Results
- Red River Basin in North Dakota Perennial Streams Assessment


EMAP Western Pilot Project "Reference Site" Based Thresholds for Nutrients

Cultivated Plains Region of ND			
Chemical Stressor	Poor	Fair	Good
Total nitrogen	>2501 ug/L	1525-2501 ug/L	<1525 ug/L
Total phosphorus	>312 ug/L	228-312 ug/L	<228 ug/L

Rangeland Plains Region of ND			
Chemical Stressor	Poor	Fair	Good
Total nitrogen	>1186 ug/L	886-1186 ug/L	<886 ug/L
Total phosphorus	>138 ug/L	70-138 ug/L	<70 ug/L


US EPA Western Pilot Project Results for North Dakota

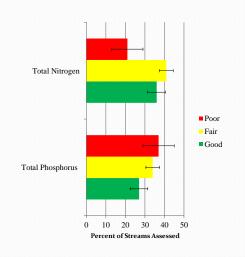

- Phosphorus
 - 43% (2,866 km) in good condition
 - 16% (1,040 km) in fair condition
 - 41% (2,677 km) in poor condition

US EPA Western Pilot Project Results for North Dakota

- Nitrogen
 - 89% (5,866 km) in good to fair condition
 - 11% (717 km) in poor condition.

Red River Basin in ND Thresholds for Nutrients

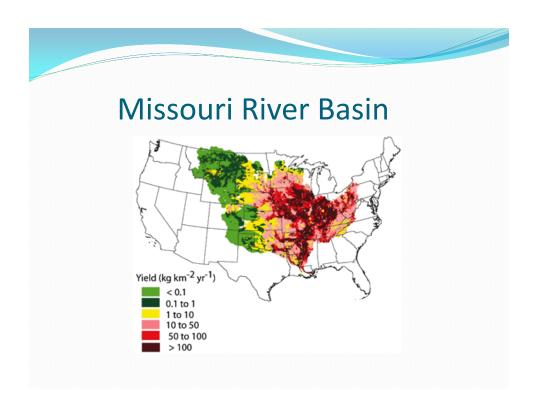
Lake Agassiz Plain Ecoregion			
Chemical Stressor	Most Disturbed	Moderately Disturbed	Least Disturbed
Total Nitrogen	>1230 μg/L	883-1230 μg/L	<883 μg/L
Total Phosphorus	>261 µg/L	148-261 µg/L	<148 µg/L


Northern Glaciated Plains Ecoregion			
Chemical Stressor	Most Disturbed	Moderately Disturbed	Least Disturbed
Total Nitrogen	>1047 μg/L	581-1047 μg/L	<581 μg/L
Total Phosphorus	>215 µg/L	115-215 µg/L	<115 μg/L

Phosphorus • 27% (638mi) in good condition • 34% (739 mi) in fair condition • 37% (636 mi) in poor condition Total Phosphorus

10 20 30 40 : Percent of Streams Assessed

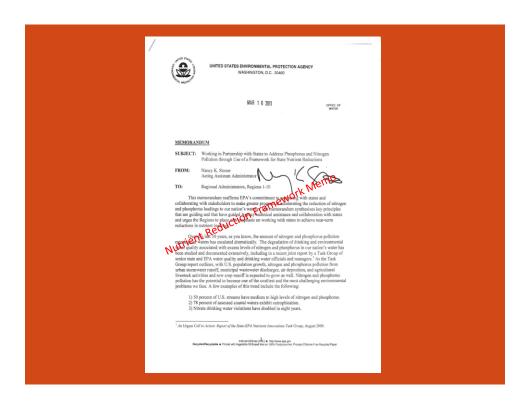
Red River Basin in North Dakota Overall Assessment


- Nitrogen
 - 36% (794) in good condition
 - 41% (813 mi) in fair condition
 - 21% (406 mi) in poor condition

Regional Nutrient Issues

- North Dakota Represented by Two Major River Basins
 - Represent Different Regional, National and International Nutrient Issues

North Dakota Nutrient Reduction Strategy


Where have we been, where are we now, and where are we going?

Where have we been?

- Nutrient criteria development plan May 2007
- Initial discussions on a state strategy in late 2011
- Based, in part, on Stoner memo (March 16, 2011)
- Formed planning team
- Selected facilitator
- EPA contractor assistance
- Developed Fact Sheet
- 1st Planning Team meeting Nov. 20, 2012

Developing a Framework for State Nutrient Reductions: Guiding Principles

- A "one size fits all" solution is neither desirable nor necessary
- Results, results: build from existing state work but find a way to publically demonstrate results
- Encourage a collaborative approach between federal partners, states, and stakeholders
- Flexible approach for states to achieve near-term reductions in N and P pollution while they complete development of their numeric nutrient criteria
 - Since 1998, EPA has encouraged states to develop numeric nutrient criteria

Nutrient Framework: Recommended Elements

- Prioritize watersheds and set load reduction goals
- Ensure effectiveness of source reduction strategies: point source permits, storm water and septic systems, agricultural areas
- Ensure accountability and report progress to public
- Continue with numeric nutrient criteria development

Where have we been?

- Nutrient criteria development plan May 2007
- Initial discussions in late 2011
- Based on Stoner memo
- Formed a planning team
- Selected facilitator
- EPA contractor assistance
- Developed Fact Sheet
- 1st Planning Team meeting Nov. 20, 2012

DEPARTMENT of HEALTH

Planning Team

Sector	Agency/Organization
Agriculture Sector	ND Stockman's Association
	ND Assoc. of Soil Conservation Districts
	ND Farmers Union
	ND Farm Bureau
Municipalities/Local Government	Public Utilities, City of Bismarck
	ND League of Cities
	ND Association of Counties
	ND Tribes, Standing Rock Sioux Tribe
	Tesoro Refinery/ND Water Pollution
Industry	Board
	American Crystal Sugar
	ND Lignite Energy Council
	ND Petroleum Council
	NORTH DAK

Planning Team

Sector	Agency/Organization
Regulatory/Agency	ND Dept of Agriculture
	ND State Water Commission
	ND Game and Fish Dept
	US Fish and Wildlife Service
Environmental	ND Wildlife Federation
	Dakota Resource Council
	Sierra Club-Dakotah Chapter
Exofficio Members	USGS
	NRCS
	US EPA Region 8
	NDSU Extension

Where have we been?

- Nutrient criteria development plan May 2007
- Initial discussions in late 2011
- Based on Stoner memo
- Formed planning team
- Selected Jodi Bruns as the facilitator
- EPA HQ contractor assistance (i.e., Tetra Tech)
- Developed Fact Sheet
- Held first Planning Team meeting on Nov. 20, 2012

1st Planning Team Meeting

- Purpose -
 - Meet and get to know one another.
 - Come to a common understanding of the nutrient management issues facing our state and to identify gaps in our common understanding.
 - Begin to outline the key elements of a state strategy and the process for developing the strategy.

2nd Planning Team Meeting

- April 11, 2013
- Purpose
 - Receive an update on other states' progress towards nutrient management strategies.
 - Approve the draft outline of North Dakota's Statewide Nutrient Reduction Strategy
 - Review processes and procedures for prioritizing watersheds/waterbodies for nutrient reduction.
 - Develop technical work groups to forward the development of the statewide strategy.

Nutrient Reduction Strategy Outline

1. Backgound

Scope of the problem

What are nutrients and why are they a problem

Nationally and internationally

State and local

Sources and stressors

2. Why a nutrient reduction strategy for ND

History with the issue

EPA

Nutrient strategy development process

Other nutrient reduction efforts?

мт

MN

Red River basin

Current and past efforts to address nutrient management

Lessons learned

Practices that worked and didn't work

Nutrient Reduction Strategy Outline

3. How does a nutrient management strategy relate to other watershed and water quality management programs and activities in the state?

Section 319 NPS Management Program

Water Quality Monitoring and Assessment

Wetland Protection

TMDL Program

Regulatory programs (e.g., NDPDES, Stormwater, septic systems, AFO/CAFO)

Water Quality Standards

Basin planning

SWC

NRCS locally lead process

Municipal and county planning and zoning

Nutrient Reduction Strategy Outline

4. Elements of a state nutrient reduction strategy

Priority watersheds

Prioritization factors

Load and targets

Nutrient criteria and TMDLs

Source reduction strategies

NPS (Agriculture, Urban)

Point sources

Industrial, Municipal

Stormwater, Septic systems, AFO/CAFO

Monitoring

Nutrient Reduction Strategy Outline

4. Elements of a state nutrient reduction strategy (con't)

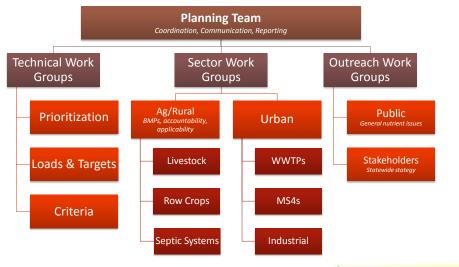
Nutrient criteria

Nutrient criteria development plan

Narrative

Targets/criteria developed and expressed through site specific TMDLs or other studies/investigations

Accountability and verification measures


Monitoring and assessment

Adaptive management

Reporting

Workgroups

Where are we now?

- · Today's stakeholder meeting
 - Purpose -
 - · Inform stakeholders of efforts to date
 - Seek input from a broad group of stakeholders with an interest and stake in the nutrient problem and reduction strategies in the state
 - Convene workgroups and begin the process of developing the elements of the strategy

Where are we going?

- Workgroups will continue to meet, as needed, to develop elements of the strategy
 - · Deadline is this summer
- Putting it all together
 - Health Dept will be tasked with writing the strategy
 - Integrating the workgroup products into the elements of the strategy
 - Planning team will continue to review and provide input into the strategy development process
 - At least one more stakeholder meeting to review and comment on the strategy
 - Next fall??

Questions?

Sector Workgroup Breakout Sessions

- <u>Technical Workgroup:</u> Nutrient Criteria Development, Prioritization, Loads, and Targets
 - Room 431 (upstairs)
- <u>Sector Workgroup</u>: Agriculture and Other Nonpoint Sources
 - Auditorium
- <u>Sector Workgroup</u>: Municipal and Industrial Point Sources
 - Room 436 (upstairs)
- Workgroup on Education and Outreach
 - Room 433 (upstairs)

