LINEAR CONSTRUCTION: Planning and Design of Erosion and Sediment Control

2015 NDWPCC Stormwater Workshop

Matthew Stone, Ph.D.
North Dakota State University
Department of Construction Management and Engineering
Site planning

Planning and designing for erosion and sediment control

- Soil loss prediction
- Hydrologic analysis
- Critical areas

Site visits are important
Critical areas

Identify areas with higher erosion potential

- Slopes
- Soils
- Poor vegetation establishment
Phasing

Amount of disturbed and unprotected ground
 ◦ Weather and seasonal considerations
Natural topography

Fit to current topography as much as possible
 ◦ Minimize cut and fill
Control surface water

Interceptor ditches and berms
Retain natural vegetation
RUSLE & RUSLE2

Soil prediction models
- *USLE* developed in 1965
- *RUSLE* improved several factor estimates
- Rill and interrill erosion

\[A = RKLSCP \]
RUSLE & RUSLE2

R factor: Rainfall-runoff erosivity

- Function of rainfall amount, intensity, and climate
- Splash erosion contributing factor
- Isoerodent maps
RUSLE & RUSLE2

K factor: Soil erodibility
- Soil texture
- Structure
- Permeability
RUSLE & RUSLE2

LS factor: Length-slope factor

- Function of horizontal length of slope and percent slope
- Deposition area
RUSLE & RUSLE2

C factor: Cover management

- Multiple types of cover can be analyzed
RUSLE & RUSLE2

P factor: Practices

- Vegetated strips, silt fence, sediment basins
RUSLE & RUSLE2

Pre-construction vs. post-construction

Construction phase:
- Changes to topography
- Erosion on bare soil with no protection
- Erosion with combination of control measures
Initial Clearing and Grubbing

<table>
<thead>
<tr>
<th>Site</th>
<th>Area Description</th>
<th>Land Area (acres)</th>
<th>R for Phase Period (May 1 to June 1)</th>
<th>Soil Factor, K</th>
<th>Length Slope Factor, LS</th>
<th>Cover Factor, C</th>
<th>Calculated Unit Area Soil Loss, A (tons/acre/period)</th>
<th>Calculated Total Area Soil Loss (tons/period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undisturbed area (L=100, S=4%)</td>
<td>3.2</td>
<td>2.84</td>
<td>0.15</td>
<td>0.55</td>
<td>0.01</td>
<td>0.002</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>Ramp (L=1,000, S=4%)</td>
<td>0.92</td>
<td>2.84</td>
<td>0.32</td>
<td>1.86</td>
<td>0.05</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>Main embankment, active construction (L=300, S=10%)</td>
<td>2.1</td>
<td>2.84</td>
<td>0.28</td>
<td>3.09</td>
<td>1.0</td>
<td>2.46</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>Side slope (L=50, S=15%)</td>
<td>0.7</td>
<td>2.84</td>
<td>0.21</td>
<td>1.52</td>
<td>0.07</td>
<td>0.06</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Total Tons =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.29</td>
<td></td>
</tr>
</tbody>
</table>

Rough Grading

<table>
<thead>
<tr>
<th>Site</th>
<th>Area Description</th>
<th>Land Area (acres)</th>
<th>R for Phase Period (June 1 to Sept 30)</th>
<th>Soil Factor, K</th>
<th>Length Slope Factor, LS</th>
<th>Cover Factor, C</th>
<th>Calculated Unit Area Soil Loss, A (tons/acre/period)</th>
<th>Calculated Total Area Soil Loss (tons/period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undisturbed area (L=100, S=4%)</td>
<td>3.2</td>
<td>63.19</td>
<td>0.15</td>
<td>0.55</td>
<td>0.01</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>2A</td>
<td>Ramp, active construction (L=500, S=5%)</td>
<td>0.46</td>
<td>63.19</td>
<td>0.47</td>
<td>1.71</td>
<td>1.0</td>
<td>50.79</td>
<td>23.36</td>
</tr>
<tr>
<td>2B</td>
<td>Ramp (L=250, S=3%)</td>
<td>0.23</td>
<td>63.19</td>
<td>0.39</td>
<td>0.64</td>
<td>0.2</td>
<td>3.15</td>
<td>0.73</td>
</tr>
<tr>
<td>2C</td>
<td>Ramp (L=250, S=1%)</td>
<td>0.23</td>
<td>63.19</td>
<td>0.33</td>
<td>0.19</td>
<td>0.2</td>
<td>0.79</td>
<td>0.18</td>
</tr>
<tr>
<td>3A</td>
<td>Main embankment, active construction (L=300, S=15%)</td>
<td>1.6</td>
<td>63.19</td>
<td>0.25</td>
<td>5.63</td>
<td>1.0</td>
<td>88.94</td>
<td>142.30</td>
</tr>
<tr>
<td>3B</td>
<td>Main embankment (L=100, S=25%)</td>
<td>0.5</td>
<td>63.19</td>
<td>0.22</td>
<td>4.59</td>
<td>0.02</td>
<td>1.28</td>
<td>0.64</td>
</tr>
<tr>
<td>4</td>
<td>Side slope (L=50, S=15%)</td>
<td>0.7</td>
<td>63.19</td>
<td>0.21</td>
<td>1.47</td>
<td>0.06</td>
<td>1.17</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Total Tons =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168.20</td>
<td></td>
</tr>
</tbody>
</table>
RUSLE & GIS

Source: Soo Huey The (2011). Soil erosion modeling using RUSLE and GIS on Cameron Highlands, Malaysia for hydropower development, Master’s Thesis, University of Iceland & University of Akureyri
Design of ESC Measures

Information from site visit and *RUSLE*
 ◦ More detail for critical area (soil samples, etc.)

Manufacturer charts and data are a great place to start but should always consider requirements
 ◦ 2-yr, 24-hr storm event
Increasing Velocity and Shear Stress

Velocity: 7.6 m/s (25 ft/s)
Shear Stress: 480 N/m² (10 psf)
Tensile Strength: 43.8 kN/m (3000 lb/ft)

Velocity: 1.5-1.8 m/s (5-6 ft/s)
Shear Stress: 96 N/m² (2.0 psf)

Image courtesy of:
Western Excelsior Corporation
Design of ESC Measures

Technical resources and testing:
◆ ECTC
◆ USDA
◆ FHWA
◆ AASHTO NTPEP

Software options (from manufacturers):
◆ ECMDS
◆ ErosionWorks
Design of ESC Measures

Avoid “cookie-cutter” plans

Monitor performance of design
 ◦ During and after construction

Communication is key!
Questions?