

Western Groundwater **Monitoring Program**

Hofflund Aquifer

Williams County

Aquifer At-a-Glance			
Area	15.0 square miles		
Aquifer Type	Unconfined and Confined Surficial		
Major Land Uses over Aquifer	Crops (70%)		
covered in 2017) ¹	Grassland/Pasture (16%)		
Depth to Water (2020)*	7-70+ feet		
Total Unique Wells Sampled	11		
Wells Sampled in 2020	11		
Years Sampled	2013, 2014, 2016, 2017, 2019, 2020		
*Depths to water may vary seasonally, year to year, and across the aguifer			

- The aquifer lies in an abandoned portion of the Missouri River channel. Deeper parts of the aquifer consist of sand and gravel deposited by streams moving meltwater away from glaciers. The upper part of the aquifer consists of gravel, sand, silt, and clay layers more-recently deposited by the Missouri River. A clay layer separates the two major layers of the aquifer in its westernmost part.²
- The deep sand and gravel part of the aquifer ranges from 15 to over 78 feet thick. This part of the aquifer averages around 45 feet thick.²
- Irrigation, industrial, domestic, and stock wells are common in the aquifer.
- In North Dakota, permits are required to withdraw large quantities of groundwater. In 2019, 1.5 billion gallons of permitted water were drawn from the aquifer; irrigation use consumed the largest quantity of water. For more information on water use and permits, contact the North Dakota State Water Commission (swc.nd.gov).

2019 Hofflund aquifer permitted water use (from North Dakota State Water Commission (swc.nd.gov)) ↓

About the Western Groundwater Monitoring Program

- The North Dakota Department of Environmental Quality (NDDEQ) monitors a network of wells in approximately 20 surficial aquifers that are at elevated risk of oilfield contamination.
- Aquifers are sampled on a 1.5-year rotation.
- Monitoring began in 2013.
- The monitored aguifers are all within the oilproducing counties of northwestern North Dakota.
- Water is tested for general chemistry parameters, trace metals, diesel and gasoline range organics, benzene, toluene, ethylbenzene, and xylenes.

References

US Department of Agriculture, 2017, National Agricultural Statistics Service Cropland Data Layer. (1)Armstrong, C.A., 1969, Geology and Ground Water Resources of Williams County, North Dakota, North (2) Dakota State Water Commission County Ground Water Studies 9-Part 3, North Dakota Geological Survey Bulletin 48.

Water Chemistry											
	Analyte	Result	2020 Median Concentration	Potential Effects							
	Arsenic	Locally	0.005 mg/L	Skin or circulatory system damage, increased cancer risk							
Is Aquifer	Iron	YES	3.58 mg/L								
Water	Manganese	YES	0.57 mg/L	Metallic taste/odor, discoloration of surfaces							
High in?	Sodium	YES	132 mg/L	Taste, people with certain health conditions may need to limit intake					ntake		
	Sulfate	YES	353 mg/L	Taste/odor, laxative effect for people not used to the water				-			
For more information about Maximum Contaminant Levels (MCLs), health effects, and treatment options for these contaminants and more, see the NDDEQ's fact sheets (deq.nd.gov/wq/1_Groundwater) or visit the US EPA website (epa.gov/ground-water-and-drinking-water).											
Dominan	Dominant Water Type Water Hardness Stiff diagram of aquifer median general water chemistre				istry.						
Sodium-Bica	Sodium-Bicarbonate-Sulfate Very Hard				general chemis	stry.					
Nitrate			15	Ca 10	ations ⁵	meq/l	5 5	nions 10	15		
Percentage of Wells Exceeding the Nitrate Maximum Contaminant Level (MCL)* (10 mg/L as N).			1		I	Na+K	сі 2016		HCO3+CO3		
0	5		10	15		Na+K	Mg	CI		SO4	
2016							Ca Mg	2017		HCO3+CC SO4	13
2017						Na+K	Ca	2019		НСОЗ+СО	3
2019							Na+K	CI		S04	
2020							Ca Mg	2020		S04	
Oilfield Compounds											

Gasoline and Diesel Range Organics

Gasoline and diesel range organics (GRO and DRO) are groups of chemical compounds containing carbon that are common in either gasoline or diesel fuel. Neither group has a regulatory limit, but the NDDEQ uses a screening level of 500 μ g/L. Detections below this may be from other natural carbon sources such as decaying plant matter rather than oil byproducts.

GRO Screening Level Exceedances	None
DRO Screening Level Exceedances	None

Chloride

Chloride is both a natural component of groundwater and a component of brine (salt water), a byproduct of oil production.

Percentage of Wells Exceeding the Non-regulatory Chloride Secondary Water Quality Standard (250 mg/L).

No Chloride Standard Exceedances

BTEX

Benzene, toluene, ethylbenzene, and xylenes (BTEX) are a group of compounds that are naturally occurring in petroleum. All four have Maximum Contaminant Levels (MCLs)* that can be used as screening levels to determine the severity of any detection.

Benzene Detections	None
Toluene Detections	None
Ethylbenzene Detections	None
Xylenes Detections	None

Bromide

Bromide is a natural component of groundwater and can also be introduced through oil and gas extraction.

Wells Exceeding NDDEQ's 3-5 mg/L	None
Screening Level:	

*Note that MCLs are for public drinking water systems; private wells are not regulated in North Dakota. MCLs still provide guidelines for drinking groundwater.

Feel free to use this information, but please credit the North Dakota Department of Environmental Quality.