

Air Quality Permit Application for Permit to Construct

Permit: T5-O14013

Watford City Gas Plant

McKenzie County, North Dakota January 2025

PREPARED FOR:

Hiland Partners Holdings LLC

McKenzie County, North Dakota

SPIRIT PROJECT: 24274.00A

FOR SPIRIT ENVIRONMENTAL:

W. Scott Hyden

OFFICE: 281-664-2490 FAX: 281-664-2491

20465 State Highway 249, Suite 300 Houston, TX 77070

spiritenv.com

Table of Contents

1.0	Introduc	ction1–1
	1.1	Proposed Modification1–1
	1.2	Application1–1
	1.3	Public Notice1–1
	1.4	Site Location1–2
	1.5	Site Description1–3
2.0	Process	s Description2-1
3.0	Emissic	on Estimates3-1
4.0	Regulat	tory Applicability4–1
	4.1	Federal Regulatory Requirements4–1
	4.1.	1 40 CFR 60, Subpart A – General Provisions4–1
	4.1.	2 40 CFR 60, Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units4–1
	4.1.	3 40 CFR 60, Subpart JJJJ – Standards for Stationary Spark Ignition Internal Combustion Engines4–1
	4.1.	4 40 CFR 60, Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification, or Reconstruction Commenced After August 23, 2011, and on or Before September 18, 2015
	4.1.	5 40 CFR 60, Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 20154–2
	4.1.	6 40 CFR 60, Subpart OOOOb – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after December 6, 20224–3
	4.1.	7 40 CFR 63, Subpart A – General Provisions4–3
	4.1.	8 40 CFR 63, Subpart HH –National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities4–3

Table of Contents (continued)

	4.1.9	40 CFR 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines
		4–4
	4.1.10	40 CFR 63, Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters
	4.1.11	40 CFR 63, Subpart JJJJJ – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources
4.2	. No	rth Dakota Regulatory Requirements4–4
	4.2.1	NDAC 33.1-15-01 - General Provisions4-4
	4.2.2	NDAC 33.1-15-02 - Ambient Air Quality Standards4-5
	4.2.3	NDAC 33.1-15-03 - Restriction of Emission of Visible Air Contaminants 4–5
	4.2.4	NDAC 33.1-15-04 – Open Burning Restrictions4–5
	4.2.5	NDAC 33.1-15-05 - Emissions of Particulate Matter Restricted4-5
	4.2.6	NDAC 33.1-15-06 - Emissions of Sulfur Compounds Restricted4-6
	4.2.7	NDAC 33.1-15-07 - Control of Organic Compounds Emissions4-6
	4.2.8	NDAC 33.1-15-08 - Control of Air Pollution from Vehicles and Other Internal Combustion Engines
	4.2.9	NDAC 33.1-15-10 - Control of Pesticides4–6
	4.2.10	NDAC 33.1-15-11 – Prevention of Air Pollution Emergency Episodes4–6
	4.2.11	NDAC 33.1-15-12 - Standards of Performance for New Stationary Sources
	4.2.12	NDAC 33.1-15-13 – Emission Standards for Hazardous Air Pollutants 4–6
	4.2.13	NDAC 33.1-15-14 - Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate.4–7
	4.2.14	NDAC 33.1-15-15 - Prevention of Significant Deterioration of Air Quality4–7
	4.2.15	NDAC 33.1-15-16 - Restriction of Odorous Air Contaminants4-7
	4.2.16	NDAC 33.1-15-17- Restriction of Fugitive Emissions4-8
	4217	NDAC 33 1-15-18 - Stack Heights 4-8

Table of Contents (continued)

	4.2.18 NDAC 33.1-15-22- Emissions Standards for Hazardous Air Pollutants 4-8
	4.2.19 Policy for the Control of Hazardous Air Pollutant Emissions in North
	Dakota (Air Toxics Policy)4-8
5.0	ND DEQ Forms5–1
6.0	Appendices 6–1

List of Tables

Table 3-1 Emissions Summary	3-	2
-----------------------------	----	---

List of Figures

Figure 1-1	Watford City Gas Plant Area Map	1–1
Figure 1-2	Watford City Gas Plant Facility Layout	1–2

1.0 Introduction

Hiland Partners Holding, LLC (Hiland) is submitting this permit modification application for the Watford City Gas Plant (Title V Operating Permit T5-O14013), a natural gas processing plant located near Alexander, in McKenzie County, North Dakota. The Watford City Gas Plant employs a cryogenic separation process to extract natural gas liquids (NGL) from field gas and then fractionates extracted liquids into ethane, butane, propane, and natural gasoline. In addition, field condensate is trucked into the facility where it is stabilized and stored in pressurized vessels prior to being trucked from the plant.

1.1 Proposed Modification

This permit request is for the construction of a new triethylene glycol (TEG) dehydration system, which will be controlled by the existing benzene, toluene, ethylbenzene, and xylene (BTEX) combustor [Emission Unit (EU) COM-1], replacement of a compressor engine with one of higher horsepower (hp), and installation of associated fugitive components.

Emissions from the proposed changes can be found in Attachment A. Equipment specifications can be found in Attachment B. The ProMax simulation report can be found in Attachment C.

1.2 Application

In accordance with North Dakota Division of Air Quality requirements, permit application forms have been completed and are included in Section 5.0.

1.3 Public Notice

Per North Dakota Administrative Code (NDAC) Section 33.1-15-14-02.6 – Public participation – Final action on application, this facility does qualify as a source category not subject to public participation procedures. The following discussion substantiates this claim:

NDAC Section 33.1-15-14-02-6.a(1)

This facility is not an affected facility per 40 CFR 61 – National Emission Standards For Hazardous Air Pollutants (NESHAP) as incorporated by NDAC Chapter 33.1-15-13. Hazardous Air Pollutant (HAP) emission calculations indicate that potential HAP emissions at the Watford City Gas Plant

will not equal or exceed the major source thresholds of 10 tons per year (tpy) of any individual HAP or 25 tpy of any combination of HAPs.

NDAC Section 33.1-15-14-02-6.a(2)

The gas plant has the potential to emit more than 100 tpy of particulate matter (PM, PM_{10} , $PM_{2.5}$), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen oxides (NO_X) carbon monoxide (CO), or volatile organic compounds (VOCs). It operates under permit to operate T5-O14013 and is subject to the Title V operating permit program. The site is not a new source required to obtain a permit to operate under section 33.1-15-14-06.

NDAC Section 33.1-15-14-02-6.a(3)

The potential to emit (PTE) will not increase by more than 100 tpy of any criteria pollutant, 10 tpy or more of any individual HAP or 25 tpy or more of any combination of HAPs (NDAC 33.1-15-14-02.01.a(3)).

NDAC Section 33.1-15-14-02-6.a(4)

Potential emissions as reported in Appendix A are not expected to have a "major impact on air quality."

NDAC Section 33.1-15-14-02-6.a(5) & (6)

As of the application date, no request for a public comment period has been received and it is anticipated that this project will not generate a significant degree of public interest.

NDAC Section 33.1-15-14-02-6.a(7)

Hiland does not request in this application federally enforceable permit conditions that limit their potential to emit (synthetic minor permit).

1.4 Site Location

The Watford City Gas Plant is located approximately seven (7) miles northwest of Alexander in the SE ¼, SE ¼ of Section 6, Township 151 North, Range 102 West, in McKenzie County, North Dakota. The general UTM coordinates are Zone 13, Easting: 591,172 meters, and Northing: 5,308,427 meters. The site elevation is approximately 2,265 feet above sea level. A map of the

facility location can be found in Figure 1-1. A plot plan of the facility location can be found in Figure 1-2.

1.5 Site Description

The terrain surrounding the facility is characterized as flat to slightly rolling hills. The surrounding area is mainly used for agriculture and livestock grazing. The air quality classification for the area is "Better than National Standards" or unclassifiable/attainment for the National Ambient Air Quality Standards for criteria pollutants [40 Code of Federal Regulations (CFR) 81.335]. There are no non-attainment areas within a reasonable distance of the site.

Figure 1-1 Watford City Gas Plant Area Map

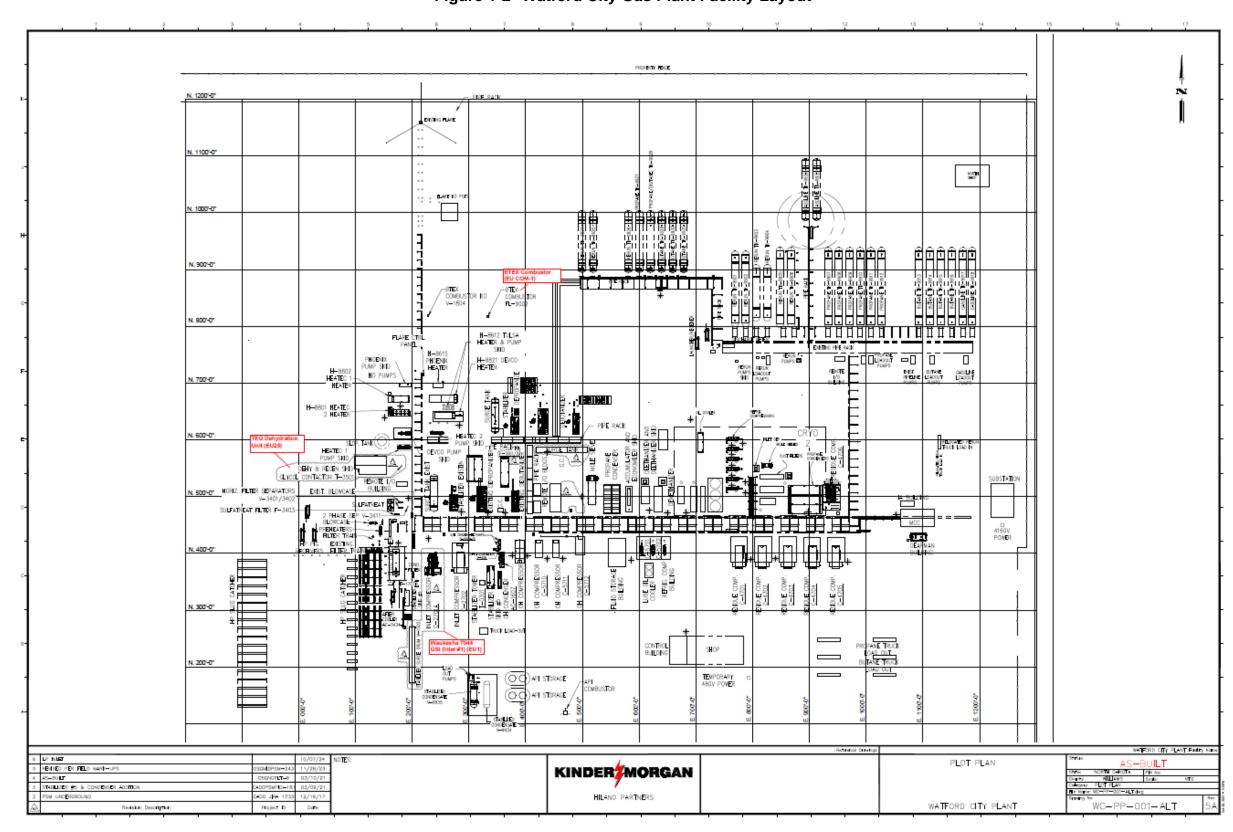


Figure 1-2 Watford City Gas Plant Facility Layout

2.0 Process Description

The Watford City Gas Plant employs a cryogenic separation process to extract NGLs from the field gas and then fractionates the extracted liquids into ethane, butane, propane, and natural gasoline. The residue gas, mostly methane, is compressed and exits the facility by the residue gas pipeline. Ethane is blended with residue gas. Propane, butane, and natural gasoline are stored in tanks and removed from the facility by tank trucks and/or by pipelines. In addition, the Watford City Gas Plant receives field condensate via truck unloading. The condensate is stabilized and then stored in pressurized storage vessels prior to being loaded and trucked out of the plant.

Emission sources currently at the plant include the following:

- Two (2) natural gas-fired compressor engines to compress the low-pressure inlet gas;
- Six (6) natural-gas fired compressor engines to compress the residue gas;
- Five (5) natural-gas fired hot oil heaters, including (EU 22), to provide heat medium for the plant;
- Two (2) TEG dehydration units used to dehydrate low pressure inlet gas, stabilizer overhead gas, and regeneration gas for mol sieves;
- One (1) process/emergency flare used for planned and emergency purposes and burns blowdowns from equipment and releases from pressure control devices;
- Four (4) atmospheric tanks for storing water and condensate liquids knocked out of the process which are controlled by the API tank flare;
- One (1) tank combustor used to control four atmospheric tanks that store water and condensate liquid that are residual from plant processes;
- One (1) BTEX combustor used to control the TEG dehydration units;
- One (1) heavy truck loading rack; and
- Piping components, including meters, connectors, valves, flanges, etc.

Emission sources proposed to be added to the plant, as outlined in Section 1.0, include the following:

 One (1) Waukesha 7044 GSI inlet compressor engine to replace the existing Ajax DCP-2804 LE (EU1); and • One (1) TEG dehydration unit used to dehydrate low pressure inlet gas, stabilizer overhead gas, and regeneration gas for mol sieves.

3.0 Emission Estimates

Air pollutants emitted from the Watford City Gas Plant are as follows: NOx, PM, PM₁₀, PM_{2.5}, SO₂, VOCs, CO, and various HAPs.

This application contains PTE calculations for the proposed TEG dehydration unit (EU25), existing BTEX combustor (EU COM-1) used to control the proposed TEG dehydration unit (EU25), proposed inlet compressor engine replacement (EU1), and associated fugitive emissions (EU FUG 1).

Calculation of potential emissions from the proposed TEG dehydration unit (EU25) are based on a ProMax simulation using an inlet gas analysis and plant specific operating parameters. The vent stream will be controlled by the existing BTEX combustor (EU COM-1). The combustor may be down for maintenance for up to 100 hours per year. During that time, the TEG dehydration unit will vent to atmosphere.

Updated calculations of potential emissions from the existing BTEX combustor (EU COM-1) due to the addition of the proposed TEG dehydration unit (EU25) are based on emission factors found in AP-42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, Section 1.4 Natural Gas Combustion, Tables 1.4-1 and 1.4-2, July 1998.

The proposed engine (EU1) calculations of NO_X, CO, and VOC potential emissions are based on permit limitations. Formaldehyde potential emissions from the proposed engine (EU1) are based on manufacturer data. Calculations of PM, PM₁₀, PM_{2.5}, SO₂, and HAP potential emissions are based on emission factors in AP-42 , Fifth Edition, Volume I, Chapter 3: Stationary Internal Combustion Sources, Section 3.2 Natural Gas Fired Reciprocating Engines Table 3.2-3. October 2024.

Potential emissions from proposed fugitive components (FUG-1) are based on estimated component counts at the facility, stream analyses, and emission factors for oil and gas production facilities from Environmental Protection Agency (EPA)'s "Protocol for Equipment Leak Emission Estimates," November 1995 EPA 4531, R-95-017, Table 2-4.

Emission calculations for the proposed changes can be found in Attachment A. Proposed facility-wide emissions summary can be found in Table 3-1.

Table 3-1 Emissions Summary

Emission Unit	Emission Unit Description	PM	PM ₁₀	PM _{2.5}	SO ₂	NOx	СО	VOC	CO₂e	Formaldehyde	HAPs
Emission Unit	Emission Unit Description	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
EU1	Waukesha 7044 GSI (Inlet #1)	1.33	1.33	1.33	0.04	16.51	16.51	11.94	8,036.53	0.02	0.43
EU2	Waukesha L-5794 GSI (Residue #1)	0.88	0.88	0.88	0.03	8.66	8.66	9.33	6,682.44	0.13	0.44
EU3	Waukesha 7044 GSI (Residue #2)	1.24	1.24	1.24	0.03	10.54	10.54	11.36	8,364.13	0.16	0.54
EU4	Hot Oil Heater - 41.65 MMBtu/hr	1.36	1.36	1.36	0.11	17.89	15.02	0.98	19.743.81		0.33
EU5	TEG Dehydration Unit							1.67			0.17
EU6	Condensate Tank (210 bbl)							0.11			
EU8	Process/Emergency Flare	0.19	0.19	0.19	0.03	8.72	39.74	19.09			0.29
EU9	Waukesha 7044 GSI (Residue #3)	1.24	1.24	1.24	0.03	10.54	10.54	11.36	8,364.13	0.16	0.54
EU10	Waukesha 7044 GSI (Residue #4)	1.24	1.24	1.24	0.03	10.54	10.54	11.36	8,364.13	0.16	0.54
EU11	Waukesha 7044 GSI (Residue #5)	1.24	1.24	1.24	0.03	10.54	10.54	11.36	8,364.13	0.16	0.54
EU12	Waukesha 7044 GSI (Inlet #2)	1.24	1.24	1.24	0.03	10.54	10.54	11.36	8,364.13	0.16	0.54
EU13	Hot Oil Heater - 38.74 MMBtu/hr	1.26	1.26	1.26	0.10	8.31	13.97	0.91	16,933.72		0.31
EU15	Condensate Tank (400 bbl)							0.21			
EU16	Condensate Tank (400 bbl)							0.21			
EU17	Condensate Tank (400 bbl)							0.21			
EU18	Hot Oil Heater - 43.5 MMBtu/hr	1.42	1.42	1.42	0.11	18.68	15.69	1.03	19,091.60		0.35
EU19	TEG Dehydration Unit							0.01			0
EU20	Waukesha 7044 GSI (Residue #6)	1.22	1.22	1.22	0.04	16.22	32.44	11.36	7,294.00	0.16	0.54
EU21	Hot Oil Heater - 37.75 MMBtu/hr	1.44	1.44	1.44	0.11	6.63	6.73	3.14	21,517.83		0.36
EU22	Hot Oil Heater - 21.0 MMBtu/hr	0.73	0.73	0.73	0.06	9.64	8.09	0.53	9,405.58		0.18
EU23	Condensate Truck Loading Rack #2							2.01			
EU24	Tank Combustor	4.33E-03	4.33E-03	4.33E-03	1.37E-03	0.23	0.22	0.09			1.71E-04
EU25	TEG Dehydration Unit							5.93			0.08
COM-1	BTEX Combustor	0.11	0.11	0.11	0.01	1.47	1.24	0.06			0.02
BD	Compressor Blowdowns ¹							19.70			0.03
FUG 1	Fugitive Emissions							83.08			0.06
	TOTAL WITHOUT FUGITIVES	16.14	16.14	16.14	0.79	165.66	211.02	145.31	130,782.35	1.12	6.20
	TOTAL WITH FUGITIVES	16.14	16.14	16.14	0.79	165.66	211.02	228.38	130,782.35	1.12	6.26
	PROJECT INCREASES	0.04	0.04	0.04	0.02	11.82	11.77	17.72	4,024.81	-0.68	-6.53
	PSD Significance Levels	250.00	250.00	250.00	250.00	250.00	250.00	250.00	75,000.00	-	

^{1.} Compressor blowdown emissions from inlet, residue, and overhead compressors.

^{2.} The threshold for CO₂e will only apply if another regulated pollutant exceeds the PSD significance level.

4.0 Regulatory Applicability

There are numerous federal and North Dakota regulations and requirements applicable to the Watford City Gas Plant. These requirements were addressed in the initial Title V operating permit application submitted March 18, 2016 and the Title V operating permit modification application submitted June 20, 2020; therefore, are not included in this application. Please refer to these applications for the detailed federal regulatory applicability analyses for the Watford City Gas Plant. This section includes a discussion of applicable regulations specifically in regard to the Watford City Gas Plant's proposed changes.

4.1 Federal Regulatory Requirements

This section includes a discussion of applicable federal regulations specifically regarding the Watford City Gas Plant's proposed changes.

4.1.1 40 CFR 60, Subpart A – General Provisions

Sources at the Watford City Gas Plant are subject to subparts in 40 CFR 60; therefore, Hiland will comply with the applicable requirements of this subpart.

4.1.2 40 CFR 60, Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

The reboiler for the new TEG dehydration unit (EU25) will be heated by an existing heater; therefore, the installation of the new TEG dehydration unit will not change the requirements of this subpart for Hiland.

4.1.3 40 CFR 60, Subpart JJJJ – Standards for Stationary Spark Ignition Internal Combustion Engines

Owners and operators are subject to 40 CFR 60 Subpart JJJJ if construction, reconstruction, or modification of the spark ignition internal combustion engine (SI ICE) commenced after June 12, 2006, and if manufactured

• On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 hp (except lean-burn engines with a maximum engine power greater than or equal to 500 hp and less than 1,350 hp);

- On or after January 1, 2008, for lean-burn engines with a maximum engine power greater than or equal to 500 hp and less than 1,350 hp;
- On or after July 1, 2008, for engines with a maximum engine power less than 500 hp; or
- On or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 hp).

The new 1,900 hp compressor engine (EU1) is a rich-burn engine that was manufactured after July 1, 2007; therefore, Subpart JJJJ is applicable and Hiland will comply with applicable requirements.

4.1.4 40 CFR 60, Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification, or Reconstruction Commenced After August 23, 2011, and on or Before September 18, 2015

Owners and operators are subject to Subpart OOOO if they commence construction, modification or reconstruction of an affected facility after August 23, 2011 and on or before September 18, 2015. For a natural gas processing plant, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, sweetening units, and equipment leaks.

The proposed changes to this site will not affect the current applicability of Subpart OOOO for this site.

4.1.5 40 CFR 60, Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

Owners and operators are subject to Subpart OOOOa if they commence construction, modification or reconstruction of an affected facility after September 18, 2015. For a natural gas processing plant, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, pneumatic controllers, sweetening units, and equipment leaks.

The existing compressor (EU1) is being replaced with a compressor with a higher hp compressor engine currently located at another site. Per 40 CFR 60.14(e)(6), the relocation of an existing facility is not considered a modification. However, the new compressor is currently subject to Subpart OOOOa; therefore, the new compressor will continue to comply with the requirements of

this subpart at the Watford City Gas Plant. Other unaffected sources already subject to this subpart will continue to comply with the requirements of this subpart.

4.1.6 40 CFR 60, Subpart OOOOb – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after December 6, 2022

Owners and operators are subject to Subpart OOOOb if they commence construction, modification or reconstruction of an affected facility after December 6, 2022. For a natural gas processing plant, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, pneumatic controllers, sweetening units, pumps, and equipment leaks.

The construction of the TEG dehydration unit (EU25) and associated fugitives will commence after December 6, 2022; therefore, the affected process unit fugitive components will comply with the requirements of this subpart.

4.1.7 40 CFR 63, Subpart A – General Provisions

Sources at the Watford City Gas Plant are subject to subparts in 40 CFR 63; therefore, Hiland will comply with the applicable requirements of this subpart.

4.1.8 40 CFR 63, Subpart HH –National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities

Subpart HH sets standards for reducing HAPs from TEG dehydration units, fugitives, and storage vessels at major source or area sources of HAP emissions. This facility is an area source of HAPs; therefore, is subject to the certain requirements applicable to TEG dehydrators. The TEG dehydrator (EU25) will process up to 40 million cubic feet per day (MMcfd) of gas (greater than the exemption threshold of 85 Mcfd). The facility will comply with the applicable requirements of this subpart.

4.1.9 40 CFR 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

This regulation applies to any reciprocating internal combustion engine (RICE) located at a major or area source of HAP emissions. Compressor engine EU1 was manufactured after July 1, 2007, and the Watford City Gas Plant is an area HAP source; therefore, engine (EU1) must meet the requirements in Maximum Achievable Control Technology (MACT) Subpart ZZZZ by meeting the requirements in NSPS Subpart JJJJ.

4.1.10 40 CFR 63, Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

This regulation applies to equipment located at major HAP sources. The Watford City Gas Plant is an area HAP source and will remain an area HAP source following project completion. Therefore, this subpart does not apply.

4.1.11 40 CFR 63, Subpart JJJJJ – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources

This regulation applies to existing, new, or reconstructed boilers located at area HAP sources. The Watford City Gas Plant is an area HAP source and will remain an area HAP source. There are no new affected sources.

4.2 North Dakota Regulatory Requirements

This section includes a discussion of applicable state regulations specifically regarding the Watford City Gas Plant's proposed changes.

4.2.1 NDAC 33.1-15-01 - General Provisions

This facility is subject to all general requirements of this section (i.e., inspection, circumvention, shutdown/malfunction, compliance, enforcement, confidentiality of records, etc.).

4.2.2 NDAC 33.1-15-02 - Ambient Air Quality Standards

The air quality of the area is classified as "Better than National Standards" or unclassifiable/attainment of the National Ambient Air Quality Standards (NAAQS) for criteria pollutants (40 CFR 81.335). There are no nonattainment areas within a reasonable distance of the site. The emission units included in this application are located at a facility that is subject to ambient air quality standards; therefore, Hiland will abide by all standards set forth in this regulation.

4.2.3 NDAC 33.1-15-03 - Restriction of Emission of Visible Air Contaminants

NDAC 33.1-15-03 contains regulations governing particulate matter and opacity limits from new and existing sources. The proposed engine (EU1) and existing BTEX combustor (EU COM-1) are subject to 33.1-15-03-02 relating to restrictions applicable to new installations which states: No person may discharge into the ambient air from any single source of emission whatsoever any air contaminant which exhibits an opacity greater than twenty percent except that a maximum of forty percent opacity is permissible for not more than one (1) six-minute period per hour. The engine and combustor will meet the requirements of this regulation.

4.2.4 NDAC 33.1-15-04 – Open Burning Restrictions

Hiland will not perform open burning of refuse, trade waste, or other combustible material except as provided for in Section 33.1-15-04-02 or 33.1-15-10-02, and will not conduct, cause, or permit the conduct of a salvage operation by open burning.

4.2.5 NDAC 33.1-15-05 - Emissions of Particulate Matter Restricted

The proposed natural gas-fired stationary combustion engine (EU1) and existing BTEX combustor (EU COM-1) will comply with the provisions of Sections 33.1-15-05-01 and 33.1-15-05-04. The engine and combustor combust fuel that generates particulate matter; therefore, are subject to allowable rate limitations that no person shall cause, suffer, allow, or permit the emission of particulate matter in any one (1) hour from any source in excess of the amount shown in 33.1-15-05-01(2)(b) Table 3: Maximum Allowable Rates of Emission of Particulate Matter from Industrial Processes.

4.2.6 NDAC 33.1-15-06 - Emissions of Sulfur Compounds Restricted

This facility combusts field gas or pipeline quality natural gas containing no more than 2.0 grains of sulfur per 100 standard cubic feet. This fuel restriction ensures compliance with NDAC 33.1-15-06-01.

4.2.7 NDAC 33.1-15-07 - Control of Organic Compounds Emissions

The compressor that will have an engine (EU1) replacement will be equipped and will operate with properly maintained seals designed for its specific product service and operating conditions. Emissions for organic compounds from the TEG dehydration unit will be combusted per the requirements of NDAC 33.1-15-07-02.

4.2.8 NDAC 33.1-15-08 - Control of Air Pollution from Vehicles and Other Internal Combustion Engines

Engine (EU1) is a natural gas-fired internal combustion engine and will comply with the restricted emissions regulation of Section 33.1-15-08-01.

4.2.9 NDAC 33.1-15-10 - Control of Pesticides

Hiland will comply with the provisions of NDAC 33.1-15-10 should pesticides be used at this facility.

4.2.10 NDAC 33.1-15-11 – Prevention of Air Pollution Emergency Episodes

Hiland will comply with any applicable source curtailment regulations when notified by the Department of an Air Pollution Emergency Episode.

4.2.11 NDAC 33.1-15-12 - Standards of Performance for New Stationary Sources

The applicability of New Source Performance Standards (NSPS) is discussed in Section 4.1.

4.2.12 NDAC 33.1-15-13 – Emission Standards for Hazardous Air Pollutants

This facility is not an affected facility per 40 CFR 61 – NESHAP as incorporated by NDAC Chapter 33.1-15-13. HAP emission calculations indicate that potential HAP emissions at the Watford City

Gas Plant will not equal or exceed the major source thresholds of 10 tpy any individual HAP or 25 tpy of any combination of HAPs.

4.2.13 NDAC 33.1-15-14 - Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate

Hiland is submitting this application per the Title V Permit to Construct requirements of this section to request construction authorization for the proposed engine replacement, TEG dehydration system installation, and associated fugitive component installation. The Watford City Gas Plant currently has the potential to emit more than 100 tons per year of NOx, CO, and VOC emissions. The facility is subject to the Title V operating permit program per NDAC 33.1-15-14-06, and currently operates under Permit to Operate T5-O14013.

In addition, the changes in potential emissions from the existing facility do not exceed the thresholds listed in the Criteria Pollutant Modeling Requirements for a Permit to Construct memorandum; therefore, modeling is not required for this project.

4.2.14 NDAC 33.1-15-15 - Prevention of Significant Deterioration of Air Quality

PSD permitting regulations apply to major stationary sources. A major stationary source is defined as a listed facility with the potential to emit 100 tons per year or more of any regulated pollutant or a non-listed facility with the potential to emit 250 tons per year or more of any regulated pollutant. Since the Watford City Gas Plant is not a listed facility, does not have the potential to emit greater than 250 tons per year of any regulated pollutant, PSD is not applicable.

Sitewide carbon dioxide equivalents (CO_2e) emissions exceed 75,000 tpy; however, the site is not an existing major source for any other regulated pollutant, and this project will not cause a significant emission increase of any other regulated pollutant; therefore, is not considered subject to regulation per 40 CFR 52.21(b)(49)(iv)(A).

4.2.15 NDAC 33.1-15-16 - Restriction of Odorous Air Contaminants

Hiland will comply with all requirements concerning odorous air contaminants at the Watford City Gas Plant as applicable to sources outside a city or outside the area over which a city has exercised extraterritorial zoning as defined in North Dakota Century Code Section 40-47-01.1.

4.2.16 NDAC 33.1-15-17- Restriction of Fugitive Emissions

Hiland will comply with all requirements by taking reasonable precautions to prevent fugitive emissions causing air pollution as defined in NDAC 33.1-15-01-04. Hiland will comply with the fugitive emissions standards in 40 CFR 60 Subpart OOOO, OOOOa, and OOOOb as applicable.

4.2.17 NDAC 33.1-15-18 - Stack Heights

Hiland will utilize good engineering practices relating to the installation of proposed engine EU1 and TEG dehydration unit (EU25). Emissions from EU1 and EU25 are vented from a stack height greater than or equal to 1.5 times the nearest building height. EU25 vents from EU COM-1.

4.2.18 NDAC 33.1-15-22- Emissions Standards for Hazardous Air Pollutants

The applicability of 40 CFR 63 – MACT for Source Categories is discussed in Section 4.1.

4.2.19 Policy for the Control of Hazardous Air Pollutant Emissions in North Dakota (Air Toxics Policy)

Proposed engine EU1 is a listed source in NDAC 33.1-15-14-01. Therefore, per the applicability section of the North Dakota Air Toxics Policy, this engine is subject to these regulations. The Dispersion Modeling Requirements, Compressor Engines and Glycol Dehydration Memorandum was rescinded on December 18, 2023.

5.0 ND DEQ Forms

The following forms are included in this application:

- FORM 8516 Permit Application for Air Contaminant Sources
- FORM 8891 Permit Application for Internal Combustion Engines and Turbines
- FORM 8532 Permit Application for Air Pollution Control Equipment (EU1)
- FORM 8329 Permit Application for Hazardous Air Pollutant (HAP) Sources (EU1)
- FORM 58923 Permit Application for Glycol Dehydration Units
- FORM 8532 Permit Application for Air Pollution Control Equipment (EU25)
- FORM 8329 Permit Application for Hazardous Air Pollutant (HAP) Sources (EU25)

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (9-2021)

SECTION A - FA	CILITY INFO	RMATI	ON					
Name of Firm or Org Hiland Partners Holding								
Applicant's Name								
Alex Schmidt								
Title					one Nu	mber	E-mail Add	
Director, Operations				(701) 833-6426 ale			alex_schmid	It@kindermorgan.com
Contact Person for A Jason Burow	Air Pollution Ma	atters						
Title EHS Engineer				Teleph (713) 42	one Nui 0-2813	mber	E-mail Add	dress /@kindermorgan.com
Mailing Address (Str 1001 Louisiana Street, S								
City				State				ZIP Code
Houston				TX				77002
Facility Name Watford City Gas Plant								
Facility Address (Str 3507 149th Avenue NW								
City				State				ZIP Code
Alexander				ND				58831
County				NAD 83	3 in Dec	imal De	, 	orth decimal degree)
Makanzia		Latitude					Longitude	
McKenzie		47.922	6300	00			-103.7792	26800
Legal Description of	Facility Site							
Quarter SE	Quarter SE		Secti 6	ion		Town 151N	ship	Range 102W
Land Area at Facility Acres (or)		q. Ft.		MSL E 2265 ft.	levation	at Fac	ility	
Acres (or)		<u>γ. ι ι.</u>		ZZOO II.				
SECTION B - GE	NFRAI NA	TURF ()F B	USINE	SS			
020110112 02				ican Indu			Standard I	ndustrial
Describe Nature of E	Business			n Syster	•	er		ion Number (SIC)
Cas Di	t							,
Gas Pla	<u>anı</u>			21111	_			1312
SECTION C - GE	NERAL PE	RMIT IN	IFOF	RMATIO	NC			
Type of Permit?	Permit to Co	nstruct (F	PTC)		Permit	to Ope	rate (PTO)	
If application is for a	Permit to Con	struct, pl	ease	provide	the follo	owing c	data:	
Planned Start Const							nstruction D	ate
5/2025				10/	2025			

SECTION D - SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

	INCLUDE					LION			_			-
		Pe	ermit to	Constr	uct		Minor	Source	e Permi	t to Ope	erate	
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
1	Compressor Engine	\checkmark										
25	TEG Dehydration Unit	\checkmark										
COM-1	BTEX Combustor		\checkmark									
FUG 1	Fugitives		\checkmark									
	tional magnetif mana											

Add additional pages if necessary

SECTION D2 - APPLICABLE REGULATIONS

OLOTION DZ	- ALL LIGABLE REGULATIONS
Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)
Facility-wide	NSPS 0000, 0000a - Fugitives
1	NSPS OOOOa - Reciprocating Compressor
1	NSPS JJJJ - Compressor Engine, MACT ZZZZ - Compressor Engine
5,19, 25	MACT HH - TEG Dehydration Unit
25	NSPS OOOOb - Process Units Fugitives

SECTION E - TOTAL POTENTIAL EMISSIONS

Pollutant	Amount (Tons Per Year)
NO _x	165.66
CO	211.02
PM	16.14

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	16.14
PM _{2.5} (filterable and condensable)	16.14
SO ₂	0.79
VOC	228.38
GHG (as CO₂e)	130,782.35
Largest Single HAP	1.12
Total HAPS	6.26

^{&#}x27;If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORM

Indi	ndicate which of the following forms are attached and made part of the application						
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect				
	(SFN 8532)		Heating (SFN 8518)				
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources				
	(SFN 8522)		(SFN 8329)				
	Natural Gas Processing Plants		Manufacturing or Processing Equipment				
	(SFN 11408)		(SFN 8520)				
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank				
	(SFN 58923)		(SFN 8535)				
	Flares		Internal Combustion Engines and Turbines				
	(SFN 59652)		(SFN 8891)				
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration				
	(SFN 8524)		(SFN 14334)				

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	Application Report	4.	ProMax Report
2.	Emission Calculations	5.	
3.	Engine Spec Sheet	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature	Date
als librate	1-15-25

INSTRUCTIONS

SITE PLANS TO BE ATTACHED TO APPLICATION:

Prepare and attach a plot plan drawn to scale or properly dimensioned, showing at least the following:

- a. The property involved and the outlines and heights of all buildings on the property. Identify property lines plainly. Also, indicate if there is a fence around the property that prevents public access.
- b. Location and identification of all existing or proposed equipment, manufacturing processes, etc., and points of emission or discharge of air contaminants to the atmosphere.
- c. Location of the facility or property with respect to the surrounding area, including residences, businesses and other permanent structures, streets and roadways. Identify all such structures and roadways. Indicate direction (**NORTH**) on the drawing and the prevailing wind direction.

EQUIPMENT PLANS AND SPECIFICATIONS FOR PERMIT TO CONSTRUCT:

Supply plans and specifications, including as a minimum an assembly drawing, dimensioned and to scale, in plan, elevation and as many sections as are needed to show clearly the design and operation of the equipment and the means by which air contaminants are controlled.

The following must be shown:

- a. Size and shape of the equipment. Show exterior and interior dimensions and features.
- b. Locations, sizes, and shape details of all features which may affect the production, collection, conveying, or control of air contaminants of any kind, location, size, and shape details concerning all material handling equipment.
- c. All data and calculations used in selecting or designing the equipment.
- d. Horsepower rating of all internal combustion engines driving the equipment.

NOTE: STRUCTURAL DESIGN CALCULATIONS AND DETAILS ARE NOT REQUIRED. WHEN STANDARD COMMERCIAL EQUIPMENT IS TO BE INSTALLED, THE MANUFACTURER'S CATALOG DESCRIBING THE EQUIPMENT MAY BE SUBMITTED IN LIEU OF ITEMS a, b, c, and d OF ABOVE, WHICH THE CATALOG COVERS. ALL INFORMATION REQUIRED ABOVE THAT THE CATALOG DOES NOT CONTAIN MUST BE SUBMITTED BY THE APPLICANT.

ADDITIONAL INFORMATION MAY BE REQUIRED:

If the application is signed by an authorized representative of the owner, a LETTER OF AUTHORIZATION must be attached to the application.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

CANAL SELL

PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION A -	- GENER	AL INF	FORMATION				
Name of Firm or Organization Facility Name							
Hiland Partners Holdings LLC				Watford City Gas Plant			
			UNIT INFORM	ATION			
Source ID Num	ber (From	form SF	N 8516)				
Type of Unit	Station	ary Natu	ral Gas-Fired Engi	ne	☐ Emer	gency Us	se Only
(check all			el and Dual Fuel E	ngine		mergen	cy Use
that apply)			oline Engine	·	Peaki		
-		ary ivatu · Specify	ral Gas-Fired Turb	ine		nd Resp	onse
		Specify	•				
SECTION C -	- MANUF	ACTU	RER DATA				
Make			Model				Date of Manufacture
Waukesha			L7044 GSI				08/01/2019
Reciprocating Ir							
Spark Ignitio	n 🗀		ression Ignition	Lean E			
4 Stroke] 2 Strol	ke 📕	Rich B		'' (DLID	· · · · · · · · · · · · · · · · · · ·
Maximum Ratin 1900 @ 1200 rpm	g (BHP @	rpm)			ting Capac 1200 rpm	ity (BHP	@ rpm)
Engine Subject	to:			1300 @	1200 19111		
	₹ 60, Subp	art IIII					
	R 60, Subp						
	R 63, Subp						
			OO (for compresso				
	R 60, Subp	art 000	OOa (for compress	ors)			
Turbine	:2	7 V	□ Na				
Dry Low Emiss Heat Input (MM		Yes	No um Rating (HP)	75% D	ating (HP)		Efficiency
Tieat Input (IVIIVI	Blu/III)	IVIAXIIII	uni Kating (FIF)	/3/0 K	auriy (FIF)		Efficiency
Turbine Subject	to:			ı			
☐ 40 CFR 60		G □	40 CFR 60, Subpa	art KKKk	<		
	-						
SECTION D -	- FUELS	USED					
Natural Gas (10	⁶ cu ft/yea	r)		Percer	nt Sulfur		Percent H ₂ S
134.67				Negligib			Negligible
Oil (gal/year)			Percent Sulfur Grade No.		Grade No.		
LP Gas (gal/year)			Other – Specify:				
SECTION E	SECTION E – NORMAL OPERATING SCHEDULE						
Hours Per Day			Weeks Per Year		Per Year	Peak	Production Season
24	7	. VVOCI	52	8760	o i o i cai	(if any	
	1		1				
SECTION F -	STACK	PARA	METERS				
<u> </u>				1			

Emission Point ID Number 1		Stack Height Above G 1.5 x Building Height (app	` ,
Stack Diameter (feet at top) 12 inches	Gas Discharged (SCFM)	Exit Temp (°F)	Gas Velocity (FPS)
	8683	1,140	184.3

SECTION G - EMISSION CONTROL EQUIPMENT

Is any emission control of	equipment installed on this unit?
☐ No [Yes – Complete and attach form SFN 8532

SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED

Dilliotont	Maximum Pounds Per	Amount (Tons Per	De la CE track t
Pollutant	Hour	Year)	Basis of Estimate*
NO _x	3.77	16.51	Vendor Data/Permit Limit
СО	3.77	16.51	Vendor Data/Permit Limit
PM	0.30	1.33	AP-42 Table 3.2-3
PM ₁₀ (filterable and condensable)	0.30	1.33	AP-42 Table 3.2-3
PM _{2.5} (filterable and condensable)	0.30	1.33	AP-42 Table 3.2-3
SO ₂	0.01	0.04	AP-42 Table 3.2-3
VOC	2.73	11.94	Permit Limit
GHG (as CO ₂ e)	1,825	7,994	AP-42 Table 3.2-3
Largest Single HAP	0.02	0.11	AP-42 Table 3.2-3
Total HAPS	0.10	0.43	Vendor Data/AP-42

^{*} If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS?	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.
■ YES □ NO	

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Hiland Partners Holdings LLC	Watford City G							
Source ID No. of Equipme	Source ID No. of Equipment being Controlled							
SECTION B – EQUIPMENT								
Type:	☐ Multiclo	ne 🗌 Baghou	se 🗌 Electrost	atic Precipitator				
☐ Wet Scrubb	oer 🔲 Spray D	ryer ☐ Flare/Co	ombustor					
■ Other – Spo	Other – Specify: NSCR							
Name of Manufacturer Waukesha	Model Nur L7044 GSI	mber	Date to Be Inst	talled				
Application: Boiler	Kiln	Engine	Other – Specify:					
Pollutants Removed	NOx	СО	VOC					
Design Efficiency (%) 92.4%		90.7%	20%					
Operating Efficiency (%)	TBD	TBD TBD						
Describe method used to d	determine operating	efficiency:						

SECTION CD - GAS CONDITIONS

Gas Conditions			Inlet	Outlet
Gas Volume (SCFM; 68°F; 14.7 psia)				8683
Gas Temperature (°F)				1,140
Gas Pressure (in. I	H ₂ O)			
Gas Velocity (ft/sec	c)			184.3
Pollutant Concentration	Pollutant	Unit of Concentration		
(Specify Pollutant and Unit of	NOx	g/bhp-hr	11.7	0.15 (permitting 0.9)
Concentration)	CO	g/bhp-hr	9.9	0.3 (permitting 0.9)
	VOC	g/bhp-hr	0.5	0.04 (permitting 0.65)
Pressure Drop Thro	ough Gas Cleanir	ng Device (in. H ₂ O)	1	ı

TBD

INSTRUCTIONS FOR PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

- Complete this form for each piece of equipment or process, which has air pollution control equipment installed, described in the following Permit Applications: Hazardous Air Pollutant (HAP) Sources (SFN 8329), Fuel Burning Equipment for Indirect Heating (SFN 8518); Manufacturing or Processing Equipment (SFN 8520); Incinerators/Crematories (SFN 8522); Internal Combustion Engines and Turbines (SFN 8891); and Glycol Dehydration Units (SFN 58923). Print or type all information. If an item does not apply, place NA in the appropriate space.
- 2. Type of Equipment If the type is not one of those listed; provide enough information so the operating principal of the equipment can be determined.
- 3. List each pollutant which the device is intended to control, the efficiency of removal intended by the designer, and the actual efficiency under operating conditions.
- 4. Please attach the following:
 - A brief description and sketch of the air pollution control device if it is of unusual design or used in conjunction with other control devices. Show any bypass of the device and specify the conditions under which the bypass is used.
 - A description of what is done with collected air contaminants from the time they are collected until they
 reach the final disposal point. Include a description of the transportation methods used.
 - If a stack test has been conducted, attach a copy of the results, date of the test, a description of the techniques used, and the name and address of the organization which performed the test.
- 5. If the control device is a combustor (e.g.: thermal oxidizer, vapor combustion unit, etc.), include an estimate of potential greenhouse gas emissions (CO₂e).

SUBMIT YOUR APPLICATION WITH ALL SUPPORTING DOCUMENTS, ALONG WITH THE FORMS SPECIFIED IN THE FIRST PARAGRAPH ABOVE, TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

SECTION A1 - APPLICANT I	NFORMATION						
Name of Firm or Organization Hiland Partners Holdings LLC							
Applicant's Name Jess Coleman							
Title Director, Operations			Telephone (701) 648-93		E-mail Add		gan.com
Mailing Address (Street & No.) 1001 Louisiana Street, Suite 1000					-		
City Houston			State TX		ZIP Code 77002		
SECTION A2 - FACILITY INF	ORMATION						
Contact Person for Air Pollution Ma Jason Burow							
Title EHS Engineer			Telephone (713) 420-28		E-mail Add		gan.com
Facility Address (Street & No. or La 3507 149th Avenue NW	at/Long to Nearest	Seco	, ,				
City Alexander			State ND		ZIP Code 58831		
County McKenzie		Number of Employees at Location					
Land Area at Plant Site 30 Acres (or) MSL Elevation at F					Plant		
Describe Nature of Business/Proce							
Natural gas processing plant	755						
Tratarar gae proceeding plant							
SECTION B - STACK DATA							
Inside Diameter (ft) 12 inches	Height Above Gr 1.5 X Building Height						
Gas Temperature at Exit (°F) 1,140	Gas Velocity at E 184.3						
Basis of any Estimates (attach sep	arate sheet if nece	essary)	•			
Are Emission Control Devices in P	lace? If YES – Co	mplete	SFN 8532		Yes		No
Nearest Residences or Building Residence	Distance (ft) 4,704			Direction East			
Nearest Property Line Property Line	Distance (ft) 325			Direction South			

SECTION C - EMISSION STREAM DATA

Source ID Number SFN 8516 1	Mean Particle Diameter (um) Unknown
Flow Rate (scfm) 8683	Drift Velocity (ft/sec) Unknown
Stream Temperature (°F) 1,140	Particulate Concentration (gr/dscf) Unknown
Moisture Content (%) Unknown	Halogens or Metals Present? Unknown
Pressure (in. Hg) 749.9	Organic Content (ppmv) Unknown
Heat Content (Btu/scfm) Unknown	O ₂ Content (%) Unknown

SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Methanol	67-56-1
Proposed Emission Rate (lb/hr) 0.02	Emission Source (describe) 1900 hp Compressor Engine #1
Source Classification (process point, process fugitive, area fugitive) Process point	Pollutant Class and Form (organic/inorganic - particulate/vapor) Organic - Vapor
Concentration in Emission Stream (ppmv) Unknown	Vapor Pressure (in. Hg @ °F) unknown
Solubility unknown	Molecular Weight (lb/lb-mole) 32.04
Absorptive Properties Unknown	

Pollutant Emitted See calculations for remaining HAPs	Chemical Abstract Services (CAS) Number
Proposed Emission Rate (lb/hr)	Emission Source (describe)
Source Classification (process point, process fugitive, area fugitive)	Pollutant Class and Form (organic/inorganic - particulate/vapor)
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Solubility	Molecular Weight (lb/lb-mole)

(Add additional pages if necessary)

Signature of Applicant,	Date
Olep lepret	1-15-25

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

PERMIT APPLICATION FOR GLYCOL DEHYDRATION UNITS

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 58923 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization Hiland Partners Holdings LLC	Facility Name Watford Gas Plant					
SECTION B - 40 CFR 63, SUBPART HH APPLI	CABILITY DETERMINATION					
The facility is a (check one): major, or area source calculations showing expected HAP emissions in accord	ce of hazardous air pollutants (HAP) as defined in §63.761. Attach dance with §63.760(a)(1).					
The facility (check all that apply):						
■ Processes, upgrades or stores hydrocarbon	■ Processes, upgrades or stores hydrocarbon liquids prior to the point of custody transfer.					
	■ Processes, upgrades or stores natural gas prior to the point at which natural gas enters the transmission and storage source category or is delivered to a final end user.					
Identify the 40 CFR 63 Subpart HH (MACT HH) affected	d source:					
Glycol (ethylene, diethylene, or triethylene source), or	e) dehydration unit & associated equipment (located at a major					
■ Tryiethylene glycol (TEG) dehydration unit (logonial dehydration)	ocated at an area source)					
The facility is exempt from MACT HH because it:						
\square Is a qualifying black oil facility, or						
	nt of custody transfer, with a facility-wide actual annual average d standard cubic meters per day and a facility-wide actual annual n 39,700 liters per day.					
■ The facility is not exempt from MACT HH.						
SECTION C _ EMISSION LINIT INFORMATION						

SECTION C - EMISSION UNIT INFORMATION

000110110		01111 1111 0	71111111111111				
Emission Unit Description	Emission Unit Identifier	Emission Point Number	Pollutant*	Emission Rate		Air Pollution Control Equipment	
·	(EU)	(EP)		lb/hr	ton/yr		
TEG Dehydration Unit	25	COM-1	VOC	1.35	5.93	BTEX Combustor	
TEG Dehydration Unit	25	COM-1	HAPs	0.02	0.08	BTEX Combustor	

Includes an estimate of greenhouse gas emissions (CO2e).

Complete the following for each glycol and triethylene glycol dehydration unit.								
	Design	Actual	Gas	Gas	Water Content (lb/MMSCF)		Glycol Recirc.	VOC
EU	Capacity (MMSCFD)	Throughput (MMSCFD)	Pressure (psig)	Temp (°F)	Wet Gas	Dry Gas	Rate (gal/min)	Emissions (ton/yr)
25	40	40	893	124	Saturated	2.51	13	5.93

SECTION D - STACK DATA

Inside Diameter (ft) N/A	Height Above Grade (ft) N/A	Gas Volume (scfm) unknown			
Gas Temperature at Exit (°F) unknown					
Are Emission Control Devices in Place? If YES – Complete SFN 8532					
Nearest Residence or Building Residence	Distance (ft) 4723	Direction East			
Nearest Property Line Property Line	Distance (ft) 525	Direction South			

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701)328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

Facility Name

Watford City Gas Plant

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

Name of Firm or Organization

Hiland Partners Holdings LLC

Source ID No. of Equipment being Controlled 25							
SECTION B – EQUIPMENT							
Type:	clone Multiclone E		ne 🗌 Bagl	ghouse		rostatic Precipitator	
☐ Wet	Scrubb	oer [] Spray D	ryer 🔳 Flare	e/Co	mbustor	
☐ Othe	er – Spe	ecify:					
_	·	,					
Name of Manufactu Unknown	ırer		Model Nur	nber		Date to Be Existing -Insta	
Application:		Kiln		Engine		Other – Specify:	Dehydration Unit
Pollutants Removed	d	VOC		HAPs		опол орозну.	
Design Efficiency (9	%)	98		98			
Operating Efficiency	y (%)	98		98			
Describe method us	sed to d	l determine c	perating	efficiency:			
						design efficie	ncy. It's assumed
the combustor w	ill be o	down 100	hr/yr fo	r maintenanc	e.		
SECTION CD -	GAS C	CONDITIC	ONS		1		
Gas Conditions Gas Volume (SCFN	//· 68°F	· 14 7 nsia)	<u> </u>		Inl	et	Outlet
,		, 11.7 pola)	,				
Gas Temperature (°F)						
Gas Pressure (in. F	1 ₂ O)						
Gas Velocity (ft/sec	;)						
Pollutant Concentration	Pollut	ant	Unit of	Concentration			
(Specify Pollutant and Unit of	١	/OC		lb/hr		43.39	1.35
Concentration)	H	IAPs		lb/hr		0.56	0.02
Pressure Drop Through Gas Cleaning Device (in. H ₂ O) TBD							

INSTRUCTIONS FOR PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

- Complete this form for each piece of equipment or process, which has air pollution control equipment installed, described in the following Permit Applications: Hazardous Air Pollutant (HAP) Sources (SFN 8329), Fuel Burning Equipment for Indirect Heating (SFN 8518); Manufacturing or Processing Equipment (SFN 8520); Incinerators/Crematories (SFN 8522); Internal Combustion Engines and Turbines (SFN 8891); and Glycol Dehydration Units (SFN 58923). Print or type all information. If an item does not apply, place NA in the appropriate space.
- 2. Type of Equipment If the type is not one of those listed; provide enough information so the operating principal of the equipment can be determined.
- 3. List each pollutant which the device is intended to control, the efficiency of removal intended by the designer, and the actual efficiency under operating conditions.
- 4. Please attach the following:
 - A brief description and sketch of the air pollution control device if it is of unusual design or used in conjunction with other control devices. Show any bypass of the device and specify the conditions under which the bypass is used.
 - A description of what is done with collected air contaminants from the time they are collected until they
 reach the final disposal point. Include a description of the transportation methods used.
 - If a stack test has been conducted, attach a copy of the results, date of the test, a description of the techniques used, and the name and address of the organization which performed the test.
- 5. If the control device is a combustor (e.g.: thermal oxidizer, vapor combustion unit, etc.), include an estimate of potential greenhouse gas emissions (CO₂e).

SUBMIT YOUR APPLICATION WITH ALL SUPPORTING DOCUMENTS, ALONG WITH THE FORMS SPECIFIED IN THE FIRST PARAGRAPH ABOVE, TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

SECTION A1 - APPLICANT I	NFORMATION					
Name of Firm or Organization Hiland Partners Holdings LLC						
Applicant's Name Alex Schmidt						
Title Director, Operations		Telephone (701) 833-64		E-mail Add		an.com
Mailing Address (Street & No.) 14933 35th St. NW				1		
City Alexander		State ND		ZIP Code 58831		
SECTION A2 - FACILITY INF	ORMATION			•		
Contact Person for Air Pollution Ma Jason Burow						
Title EHS Engineer		Telephone (713) 420-28		E-mail Add		an.com
Facility Address (Street & No. or La 3507 149th Avenue NW	at/Long to Nearest Sec	ond)		1		
City Alexander		State ND		ZIP Code 58831		
County McKenzie	mber of Empl	of Employees at Location				
Land Area at Plant Site 30 Acres (or) MSL Elevation at Plant 2265						
Describe Nature of Business/Proce	266					
Natural gas processing plant	300					
SECTION B – STACK DATA						
Inside Diameter (ft) Unknown	Height Above Grade Unknown	(ft)				
Gas Temperature at Exit (°F) Unknown	Gas Velocity at Exit (Unknown	Exit (ft/sec) Gas Volui Unknown		ume (scfm)		
Basis of any Estimates (attach sep	arate sheet if necessar	y)				
Are Emission Control Devices in P	lace? If YES – Comple	te SFN 8532		Yes		No
Nearest Residences or Building Residence	Distance (ft) 4,723		Direction East			
Nearest Property Line Property Line	Distance (ft) 525		Direction South			

SECTION C - EMISSION STREAM DATA

Source ID Number SFN 8516 25	Mean Particle Diameter (um) Unknown
Flow Rate (scfm) Unknown	Drift Velocity (ft/sec) Unknown
Stream Temperature (°F) Unknown	Particulate Concentration (gr/dscf) Unknown
Moisture Content (%) Unknown	Halogens or Metals Present? Unknown
Pressure (in. Hg) Unknown	Organic Content (ppmv) Unknown
Heat Content (Btu/scfm) Unknown	O₂ Content (%) Unknown

SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Benzene	71-43-2
Proposed Emission Rate (lb/hr) 0.01	Emission Source (describe) TEG Dehydration Unit
Source Classification (process point, process fugitive, area fugitive) Process point	Pollutant Class and Form (organic/inorganic - particulate/vapor) Organic - Vapor
Concentration in Emission Stream (ppmv) Unknown	Vapor Pressure (in. Hg @ °F) Unknown
Solubility Unknown	Molecular Weight (lb/lb-mole) 78.11
Absorptive Properties Unknown	•

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Proposed Emission Rate (lb/hr)	Emission Source (describe)
Source Classification (process point, process fugitive, area fugitive)	Pollutant Class and Form (organic/inorganic - particulate/vapor)
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Solubility	Molecular Weight (lb/lb-mole)

(Add additional pages if necessary)

Signature of Applicant	Date
Me leproff	1-15-25

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188

6.0 Appendices

Appendix A – Supporting Emission Calculations

Appendix B - Manufacturer Specifications

Appendix C – ProMax Report

Hiland Partners Holdings LLC Watford City Gas Plant Engine (EU1) Emissions Equipment Data

Emission Unit (EU):	EU1	
Emission Unit Name:	Waukesha 7044 GSI (Inlet #1)	
Engine Type:	48	RB
Fuel Usage:	134.67	MMscf/yr
Horsepower:	1,900	bhp
Speed:	1,200	rpm
Hours of Operation:	8,760	hr/yr
Max. Fuel Combustion Rate (HHV):	8,253	Btu/bhp-hr
Fuel Heating Value (HHV):	1,020	Btu/scf
Max. Heat Rate (HHV):	15.68	MMBtu/hr
CO ₂ GWP (100 year):	,	1
CH ₄ GWP (100 year):	: 28	
N₂O GWP (100 year):	2	65

(Calculated value based on max fuel combustion rate.)

(Based on Manufacturer Specs)

	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor ^{1,2,3}	Units	Reference	(lb/hr)	(ton/yr)
PM-10 (Front and Back Half)	0.0194	lb/MMBtu	AP-42 Table 3.2-3 (10/24)	0.30	1.33
NOx	0.90	g/BHP-hr	Engine Vendor	3.77	16.51
CO	0.90	g/BHP-hr	Engine Vendor	3.77	16.51
SO2	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3 (10/24)	0.01	0.04
VOC	0.65	g/BHP-hr	Permit Limit	2.73	11.94
Total HAPs	See EU1 HAPs Em	nissions Calcs	Engine Vendor/AP-42 Table 3.2-3 (10/24)	0.10	0.43
Formaldehyde	0.001	g/BHP-hr	Engine Vendor	4.19E-03	0.02
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO₂e		-		1,835	8,037
GHG	-	-		1,729	7,571
CO ₂	110	lb/MMBtu	AP-42 Table 3.2-3 (10/24)	1,725	7,555
CH ₄	0.23	lb/MMBtu	AP-42 Table 3.2-3 (10/24)	3.61	15.80
N ₂ O	2.2	lb/MMscf	AP-42 Table 1.4-2 (07/00)	0.03	0.15

Notes:

- 1. NOx, CO and VOC emissions based on permitted EFs for the engine at it's previous location. Formaldehyde emissions are based on manufacturer data. PM/PM₀ and SO₂ emissions based on AP-42 Table 3.2-3.
- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter. PM = $PM_{10} = PM_{2.5}$
- 3. VOC emissions include formaldehyde.

Sample Calculation:

PM-10 Emissions (ton/yr) = (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton PM-10 Emissions (ton/yr) = (0.01941 lb/MMBtu) x (15.68 MMBtu/hr) x (8,760 hr/yr) / (2,000 lb/ton) = 1.33 ton/y

VOC Emissions (ton/yr) = (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb) VOC Emissions (ton/yr) = (0.65 g/bhp-hr) x (1900 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 11.94 ton/yr

 CO_2 e Emissions (ton/yr) = (CO_2 emissions x 1) + (CH_4 emissions x 25) + (N_2O emissions x 298)

 CO_2e Emissions (ton/yr) = ((7554.96 ton/yr x 1) + (15.80 ton/yr x 28) + (0.15 ton/yr x 265)) = 8036.53 ton/yr

GHG Emissions (ton/yr) = (CO₂ emissions) + (CH₄ emissions) + (N₂O emissions)

GHG Emissions (ton/yr) = (7554.96 ton/yr) + (15.80 ton/yr) + (0.15 ton/yr) = 7570.91 ton/yr

Hiland Partners Holdings LLC Watford City Gas Plant Engine (EU1) HAPs Emissions Equipment Data

Emission Unit (EU):	EU1				
Emission Unit Name:	Waukesha 7044 GSI (Inlet #1)				
Engine Type:	4SRB				
			Heat Input	Heat Input	Fuel Input
Engines	Horsepower (hp)	Hours per Year	(MMBtu/hr)	(MMBtu/yr)	(MMscf/yr)
Engine EU1	1,900	8,760	16	137,363	134.67

	Emission Factor		Control Efficiency	Controlled Emissions	Controlled Emissions	
HAPs	(lb/MMBtu)	(g/bhp-hr)	(%)	(lb/hr)	(tpy)	Notes
1,1,2,2-Tetrachloroethane	2.53E-05		50%	1.98E-04	8.69E-04	1,3
1,1,2-Trichloroethane	1.53E-05		50%	1.20E-04	5.25E-04	1,3
1,1-Dichloroethane	1.13E-05		50%	8.86E-05	3.88E-04	1,3
1,2-Dichloroethane	1.13E-05		50%	8.86E-05	3.88E-04	1,3
1,2-Dichloropropane	1.30E-05		50%	1.02E-04	4.46E-04	1,3
1,3-Butadiene	6.63E-04		50%	0.01	0.02	1,3
1,3-Dichloropropene	1.27E-05		50%	9.96E-05	4.36E-04	1,3
Acetaldehyde	2.79E-03		50%	0.02	0.10	1,3
Acrolein	2.63E-03		50%	0.02	0.09	1,3
Benzene	1.58E-03		50%	0.01	0.05	1,3
Carbon Tetrachloride	1.77E-05		50%	1.39E-04	6.08E-04	1,3
Chlorobenzene	1.29E-05		50%	1.01E-04	4.43E-04	1,3
Chloroform	1.37E-05		50%	1.07E-04	4.70E-04	1,3
Ethylbenzene	2.48E-05		50%	1.94E-04	8.52E-04	1,3
Ethylene Dibromide	2.13E-05		50%	1.67E-04	7.31E-04	1,3
Formaldehyde		1.00E-03		4.19E-03	0.02	2
Methanol	3.06E-03		50%	0.02	0.11	1,3
Methylene Chloride	4.12E-05		50%	3.23E-04	1.41E-03	1,3
Naphthalene	9.71E-05		50%	7.61E-04	3.33E-03	1,3
PAH	1.41E-04		50%	1.11E-03	4.84E-03	1,3
Styrene	1.19E-05		50%	9.33E-05	4.09E-04	1,3
Toluene	5.58E-04		50%	4.37E-03	0.02	1,3
Vinyl Chloride	7.18E-06		50%	5.63E-05	2.47E-04	1,3
Xylene	1.95E-04		50%	1.53E-03	0.01	1,3

Notes

- 1. Emission factor from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (October 2024)
- 2. Vendor Information.
- 3. Control efficiency from the dual catalytic converter unit was conservatively assumed to be 50% per verbal guidance by NDDH on 4/29/10.

Hiland Partners Holdings LLC Watford City Gas Plant Dehy Emissions Equipment Data

Emission Unit (EU):	EU5 EU19 EU25
Emission Unit Name:	TEG Dehydration Unit
Hours of Operation:	8,760 hr/yr
Flow (EU5) [:]	30.00 MMscfd
Flow (EU19)	4.00 MMscfd
Flow (EU25):	
Total Flow:	27,010 MMscf
Combustor Maintenance	
Downtime:	
Combustor Destruction	
Efficiency:	98%

	E	U5		J19	E	U25		19, EU26
Pollutant	Condenser Ou	tlet Emissions	Condenser Ou	ıtlet Emissions	Condenser O	utlet Emissions	Annual E	missions
	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)
VOC	12.21	53.47	0.05	0.22	43.39	190.07	55.65	243.76
-Propane	4.74	20.75	0.05	0.21	21.31	93.36	26.10	114.32
-Isobutane	0.90	3.95	4.00E-04	1.75E-03	2.78	12.17	3.68	16.12
-n-Butane	3.70	16.22	1.60E-03	0.01	12.23	53.55	15.93	69.78
-Isopentane	0.45	1.98	0	0	2.20	9.62	2.65	11.60
-n-Pentane	0.74	3.24	0	0	3.05	13.34	3.79	16.58
-Cyclopentane	0.06	0.25	0	0	0	0	0.06	0.25
-n-Hexane	0.06	0.28	0	0	0	0	0.06	0.28
-Cyclohexane	0.10	0.42	0	0	0	0	0.10	0.42
-Other Hexanes	0.10	0.45	0	0	1.20	5.27	1.31	5.72
-Heptanes	0.11	0.50	0	0	0.07	0.30	0.18	0.80
-Methylcyclohexane	0.04	0.16	0	0	0	0	0.04	0.16
-2,2,4-Trimethylpentane	1.80E-03	0.01	0	0	0	0	1.80E-03	0.01
-Benzene	0.67	2.94	0	0	0.45	1.96	1.12	4.90
-Toluene	0.24	1.03	0	0	0.10	0.44	0.34	1.47
-Ethylbenzene	0	0	0	0	1.74E-03	0.01	1.74E-03	0.01
-Xylenes	0.28	1.22	0	0	0.01	0.04	0.29	1.26
-C8+ Heavies	0.02	0.07	0	0	0.01	0.02	0.02	0.09
HAPs	1.25	5.48	0	0	0.56	2.44	1.81	7.93
-n-Hexane	0.06	0.28	0	0	0	0	0.06	0.28
-2,2,4-Trimethylpentane	1.80E-03	0.01	0	0	0	0	1.80E-03	0.01
-Benzene	0.67	2.94	0	0	0.45	1.96	1.12	4.90
-Toluene	0.24	1.03	0	0	0.10	0.44	0.34	1.47
-Ethylbenzene	0	0	0	0	1.74E-03	0.01	1.74E-03	0.01
-Xylenes	0.28	1.22	0	0	0.01	0.04	0.29	1.26
BTEX	1.19	5.19	0	0	0.56	2.44	1.74	7.64
-Benzene	0.67	2.94	0	0	0.45	1.96	1.12	4.90
-Toluene	0.24	1.03	0	0	0.10	0.44	0.34	1.47
-Ethylbenzene	0	0	0	0	1.74E-03	0.01	1.74E-03	0.01
-Xylenes	0.28	1.22	0	0	0.01	0.04	0.29	1.26

	Post Co	mbustor	Post Co	mbustor	Post Co	ombustor	EU5, EU	19, EU25
Pollutant	Emis	sions	Emis	sions	Emi	ssions	Annual E	missions
	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)
VOC	0.38	1.67	1.59E-03	0.01	1.35	5.93	0.38	7.60
-Propane	0.15	0.65	1.53E-03	0.01	0.66	2.91	0.81	3.57
-Isobutane	0.03	0.12	1.25E-05	5.46E-05	0.09	0.38	0.11	0.50
-n-Butane	0.12	0.51	4.99E-05	2.19E-04	0.38	1.67	0.50	2.18
-Isopentane	0.01	0.06	0	0	0.07	0.30	0.08	0.36
-n-Pentane	0.02	0.10	0	0	0.09	0.42	0.12	0.52
-Cyclopentane	1.75E-03	0.01	0	0	0	0	1.75E-03	0.01
-n-Hexane	2.02E-03	0.01	0	0	0	0	2.02E-03	0.01
-Cyclohexane	3.01E-03	0.01	0	0	0	0	3.01E-03	0.01
-Other Hexanes	3.18E-03	0.01	0	0	0.04	0.16	0.04	0.18
-Heptanes	3.57E-03	0.02	0	0	2.13E-03	0.01	0.01	0.02
-Methylcyclohexane	1.11E-03	4.88E-03	0	0	0	0	1.11E-03	4.88E-03
-2,2,4-Trimethylpentane	5.61E-05	2.46E-04	0	0	0	0	5.61E-05	2.46E-04
-Benzene	0.02	0.09	0	0	0.01	0.06	0.03	0.15
-Toluene	0.01	0.03	0	0	3.11E-03	0.01	0.01	0.05
-Ethylbenzene	0	0	0	0	5.42E-05	2.4E-04	5.42E-05	2.37E-04
-Xylenes	0.01	0.04	0	0	2.98E-04	1.3E-03	0.01	0.04
-C8+ Heavies	5.08E-04	2.23E-03	0	0	1.63E-04	7.14E-04	6.71E-04	2.94E-03
HAPs	0.04	0.17	0	0	0.02	0.08	0.06	0.25
-n-Hexane	2.02E-03	0.01	0	0	0	0	2.02E-03	0.01
-2,2,4-Trimethylpentane	5.61E-05	2.46E-04	0	0	0	0	5.61E-05	2.46E-04
-Benzene	0.02	0.09	0	0	0.01	0.06	0.03	0.15
-Toluene	0.01	0.03	0	0	3.11E-03	0.01	0.01	0.05
-Ethylbenzene	0	0	0	0	5.42E-05	2.37E-04	5.42E-05	2.37E-04
-Xylenes	0.01	0.04	0	0	2.98E-04	1.30E-03	0.01	0.04
BTEX	0.04	0.16	0	0	0.02	0.08	0.04	0.24
-Benzene	0.02	0.09	0	0	0.01	0.06	0.02	0.15
-Toluene	0.01	0.03	0	0	3.11E-03	0.01	0.01	0.05
-Ethylbenzene	0	0	0	0	5.42E-05	2.37E-04	0	2.37E-04
-Xylenes	0.01	0.04	0	0	2.98E-04	1.30E-03	0.01	0.04

Hiland Partners Holdings LLC Watford City Gas Plant BTEX Combustor Emissions Equipment Data

Emission Unit (EU):	COM-1
Emission Unit Name:	
Annual Hours of Operation:	8760 hr/yr
Condenser Overhead:	7.60 MMscf
Pilot Gas + Assist Gas:	21.81 MMscf

C	riteria Pollutant Emi	ssions		Condenser Overhead		Pilot + Assist Gas		Total	
Pollutant Emission Factor Units		EF Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
NOx	100	lb/MMscf	AP-42 Table 1.4-1	0.09	0.38	0.25	1.09	0.34	1.47
CO	84	lb/MMscf	AP-42 Table 1.4-1	0.07	0.32	0.21	0.92	0.28	1.24
VOC ¹	5.5	lb/MMscf	AP-42 Table 1.4-2	0	0	0.01	0.06	0.01	0.06
PM Condenseable	5.7	lb/MMscf	AP-42 Table 1.4-2	4.94E-03	0.02	0.01	0.06	0.02	0.08
PM Filterable	1.9	lb/MMscf	AP-42 Table 1.4-2	1.65E-03	0.01	4.73E-03	0.02	0.01	0.03
PM Total	7.6	lb/MMscf	AP-42 Table 1.4-2	0.01	0.03	0.02	0.08	0.03	0.11
SO ₂	0.6	lb/MMscf	AP-42 Table 1.4-2	5.20E-04	2.28E-03	1.49E-03	0.01	2.01E-03	0.01

HAPs Emissions ¹				Condenser Overhead		Pilot + Assist Gas		Total	
Pollutant	Emission Factor	Units	EF Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Benzene	2.10E-03	lb/MMscf	AP-42 Table 1.4-3	0	0	5.23E-06	2.29E-05	5.23E-06	2.29E-05
Formaldehyde	0.08	lb/MMscf	AP-42 Table 1.4-3	0	0	1.87E-04	8.18E-04	1.87E-04	8.18E-04
Toluene	3.40E-03	lb/MMscf	AP-42 Table 1.4-3	0	0	8.47E-06	3.71E-05	8.47E-06	3.71E-05
n-hexane	1.80	lb/MMscf	AP-42 Table 1.4-3	0	0	4.48E-03	0.02	4.48E-03	0.02

Condenser Vent Stream							
		scf/hr total	8.1	2 scf/hr total	781.63 scf/hr total ProMax Output		
	GLYCalc	Output	GLYCalc (Output			
Component	mol%	scf/hr	mol%	scf/hr	mol %	scf/hr	
Water	12.30		12.40		0.81		
CO2	2.97		9.95		2.05		
Nitrogen	0.00		1.04		0.97		
Methane	0.50	0.65	28.20	2.29	29.00	226.67	
Ethane	19.00	24.51	43.00	3.49	26.58	207.76	
Propane	31.50	40.64	5.19	0.42	23.47	183.45	
Isobutane	4.55	5.87	0.03	0.00	2.32	18.13	
n-Butane	18.70	24.12	0.13	0.01	10.21	79.80	
IsoPentane	1.84	2.37			1.48	11.57	
n-Pentane	3.01	3.88			2.05	16.02	
Cyclopentane	0.23	0.30			0.00	0.00	
n-Hexane	0.22	0.29			0.00	0.00	
Cyclohexane	0.34	0.43			0.00	0.00	
Other hexanes	0.35	0.45			0.68	5.32	
Heptanes	0.34	0.43			0.03	0.23	
Methylcyclohexane	0.11	0.14			0.00	0.00	
2,2,4-Triemethylpentane	0.00	0.01			0.00	0.00	
Benzene	2.52	3.25			0.28	2.19	
Toluene	0.75	0.97			0.05	0.39	
Xylenes	0.77	0.99			0.00	0.03	
TEG					0.00	8.19E-18	
C8 +	0.03	0.04			0.00	0.02	
Total	100	109.33	100	6.22	100	751.59	

Notes:

^{1.} VOC and HAPs emissions are shown at EU5, EU19, and EU25.

Hiland Partners Holdings LLC Watford City Gas Plant Fugitive Emissions **Equipment Data**

Emission Unit (EU):	FUG 1
Emission Unit Name:	Fugitive Emissions
Annual Operating Days:	365 days/yr
Annual Operating Hours:	8760 hr/yr

Equipment Information - Monitored C	Components Subje	ct to 40 CFR 60 Subp	art KKK, 0000, 00	000a & 0000b						
			Control				Uncon	trolled	Contr	olled
	Number of	Emission Factor ²	Efficiency ³	TOC	TOC	VOC ⁴	VOC	VOC	VOC	VOC
Source Type/Service	Sources ¹	(lb-hr/source)	(%)	lb/hr	ton/yr	Wt%	lb/hr	ton/yr	lb/hr	ton/yr
Valve - Gas	4659	9.92E-03	67.00%	46.22	202.43	39.14%	18.09	79.22	5.97	26.14
Connectors - Gas	9274	4.41E-04	67.00%	4.09	17.91	39.14%	1.60	7.01	0.53	2.31
Compressor Seals - Gas	23	0.0194	75.00%	0.45	1.95	39.14%	0.17	0.76	0.04	0.19
Other - Gas	810	0.0194	97.00%	15.71	68.83	39.14%	6.15	26.94	0.18	0.81
Total (Gas Components)				66.47	291.13		26.01	113.93	6.73	29.46
Valves - Light Oil	3812	5.51E-03	61.00%	21.00	92.00	100.00%	8.22	92.00	3.21	35.88
Connectors - Light Oil	18002	4.63E-04	61.00%	8.33	36.51	100.00%	3.26	36.51	1.27	14.24
Open-Ended Lines - Light Oil	0	3.09E-03	97.00%	0.00	0.00	100.00%	0.0	0.0	0.0	0.0
Other - Light Oil	800	0.0005	97.00%	0.37	1.62	100.00%	0.14	1.62	4.35E-03	0.05
Pump Seals - Light Oil	50	0.0287	45.00%	1.44	6.29	100.00%	0.56	6.29	0.31	3.46
Total (Liquid Components)				31.14	136.41		12.19	136.41	4.79	53.62
Total (Gas + Liquid Components)	-	•	•	97.61	427.54		38.20	250.35	11.52	83.08

- Notes
 1: Counts from July-December 2022 SA LDAR reports from TEAM. Distribution of valves and connectors based on 2018 Title V application.
- 2: Emission factors are for oil and gas production facilities (not refineries) from EPA's "Protocol for Equipment Leak Emission Estimates", November 1995, EPA 4531, R-95-017, Table
- 2-4.
- 3: Control efficiencies based on NSPS KKK LDAR Program under 10,000 ppm leak definition monitored quarterly (applied % control to connectors as well since all monitored under 0000/0000a/0000b).
- 4: Speciated gas sampled from plant inlet analysis from October 2023 and light liquid assumed 100% VOC.

Component	Gas	Gas/Vapor	Emissions
Component	(wt%)	(lb/hr)	(tpy)
CO ₂	1.40	0.09	0.41
Nitrogen	1.53	0.10	0.45
H₂S	0.00	0.00	0.00
Methane	25.47	1.71	7.50
Ethane	32.46	2.18	9.56
Propane	26.46	1.78	7.79
i-Butane	2.95	0.20	0.87
n-Butane	7.32	0.49	2.16
i-Pentane	0.77	0.05	0.23
n-Pentane	0.84	0.06	0.25
Benzene	0.01	0.00	0.00
n-Hexane	0.18	0.01	0.05
Hexanes	0.34	0.02	0.10
Toluene	0.00	0.00	0.00
Heptanes	0.26	0.02	0.08
2,2,4-Trimethylpentane	0.00	0.00	0.00
Ethylbenzene	0.00	0.00	0.00
Xylenes	0.00	0.00	0.00
Octanes	0.01	0.00	0.00
Nonanes	0.00	0.00	0.00
C10+	0.00	0.00	0.00
Total	100.00	6.73	29.46
Total VOC	39.14	2.63	11.53
Total HAPs	0.21	0.01	0.06

Gas Compression

ENGINE SPEED (rpm):	1200	NOx SELECTION (g/bhp-hr):	Customer Catalyst
DISPLACEMENT (in3):	7040	COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	9.7:1	INTERCOOLER WATER INLET (°F):	130
IGNITION SYSTEM:	ESM2	JACKET WATER OUTLET (°F):	180
EXHAUST MANIFOLD:	Water Cooled	JACKET WATER CAPACITY (gal):	100
COMBUSTION:	Rich Burn, Turbocharged	AUXILIARY WATER CAPACITY (gal):	11
ENGINE DRY WEIGHT (lbs):	24250	LUBE OIL CAPACITY (gal):	190
AIR/FUEL RATIO SETTING:	0.38% CO	MAX. EXHAUST BACKPRESSURE (in. H2O):	20
ENGINE SOUND LEVEL (dBA)	102.7	MAX. AIR INLET RESTRICTION (in. H2O):	15
IGNITION TIMING:	ESM2 Controlled	EXHAUST SOUND LEVEL (dBA)	98.9

SITE CONDITIONS:			
FUEL:	Natural Gas	ALTITUDE (ft):	3000
FUEL PRESSURE RANGE (psig):	40 - 60	MAXIMUM INLET AIR TEMPERATURE (°F):	100
FUEL HHV (BTU/ft3):	1,274.3	FUEL WKI:	59.7
FUEL LHV (BTU/ft3):	1,151.9		

SITE SPECIFIC TECHNICAL DATA		MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 100 °F			
POWER RATING	UNITS	MIL MA	AIR TEMP	100%	75%	51%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr		1881 0	1881 0	1411 -	950 -
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL	% BHP		34.1 1881	34.1 1881	33.5 1411	31.7 950
based on no auxiliary engine driven equipment						

AVAILABLE TURNDOWN SPEED RANGE		RPM		900 - 1200		
FUEL CONSUMPTION	=					
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	7461	7461	7609	8033
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	8253	8253	8417	8886
FUEL FLOW	based on fuel analysis LHV	SCFM	203	203	155	110
HEAT REJECTION JACKET WATER (JW)		BTU/hr x 1000	3842	3842	3061	2291
_UBE OIL (OC)		BTU/hr x 1000	497	497	453	399
NTERCOOLER (IC)		BTU/hr x 1000	726	726	405	155
EXHAUST		BTU/hr x 1000	3844	3844	2856	1975
RADIATION		BTU/hr x 1000	609	609	576	544

EMISSIONS (ENGINE OUT):					
NOx (NO + NO2)	g/bhp-hr	11.8	11.8	13.1	13.7
CO	g/bhp-hr	9.7	9.7	9.6	9.8
THC	g/bhp-hr	0.3	0.3	0.3	0.3
NMHC	g/bhp-hr	0.12	0.12	0.21	0.31
NM,NEHC (VOC)	g/bhp-hr	0.05	0.05	0.08	0.12
CO2	g/bhp-hr	480	480	490	517
CO2e	g/bhp-hr	484	484	496	526
CH2O	g/bhp-hr	0.001	0.001	0.001	0.001
CH4	g/bhp-hr	0.14	0.14	0.24	0.35

AIR INTAKE / EXHAUST GAS					
INDUCTION AIR FLOW	SCFM	2626	2626	2009	1429
EXHAUST GAS MASS FLOW	lb/hr	12210	12210	9339	6643
EXHAUST GAS FLOW at exhaust temp. 14.5 psi	a ACFM	8683	8683	6512	4538
EXHAUST TEMPERATURE	°F	1140	1140	1109	1077

HEAT EXCHANGER SIZING ¹²		
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	4357
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	1387

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	36

Gas Compression

FUEL COMPOSITION					
HYDROCARBONS:	Mo	le or Volume %		FUEL:	Natural Gas
Methane	CH4	69.39		FUEL PRESSURE RANGE (psig):	40 - 60
Ethane	C2H6	19.31		FUEL WKI:	59.7
Propane	C3H8	6.64			
Iso-Butane	I-C4H10	0.43		FUEL SLHV (BTU/ft3);	1131.89
Normal Butane	N-C4H10	0.88		FUEL SLHV (MJ/Nm3):	44.51
Iso-Pentane	I-C5H12	0.0692		· · · · · · · · · · · · · · · · · · ·	
Normal Pentane	N-C5H12	0.0815		FUEL LHV (BTU/ft3):	1151.93
Hexane	C6H14	0.1201		FUEL LHV (MJ/Nm3):	45.30
Heptane	C7H16	0.1201		. 022 2117 (000111110).	40.00
Ethene	C2H4	Ö		FUEL HHV (BTU/ft3):	1274.26
Propene	C3H6	0		FUEL HHV (MJ/Nm3):	50.11
rropene	Cono	U		FUEL HAV (MIJ/MIIIS).	50.11
	SUM HYDROCARE	ONS 96.921		FUEL DENSITY (SG):	0.75
NON-HYDROCARBONS:					
Nitrogen	N2	2.183		Standard Conditions per ASTM D3588-91 (80°F a	nd 14.696psia) and
Oxygen	O2	0		ISO 6976:1996-02-01[25, V(0;101.325)]. Based on the fuel composition, supply pressure a	nd temperature liquid
Helium	He	0		hydrocarbons may be present in the fuel. No liquid	
Carbon Dioxide	CO2	0.8857		allowed in the fuel. The fuel must not contain any	
Carbon Monoxide	co	0		recommends both of the following:	
Hydrogen	H2	0		 Dew point of the fuel gas to be at least 20°F (1) measured temperature of the gas at the inlet of the 	
Water Vapor	H2O	0		A fuel filter separator to be used on all fuels exc	
		-		natural gas.	-,,,
	TOTAL FUEL	99.99		Refer to the 'Fuel and Lubrication' section of Tech the Waukesha Application Engineering Departme	
				information on fuels, or LHV and WKI* calculation * Trademark of General Electric Company	5.
FUEL CONTAMINANTS		·			
Total Sulfur Compounds		0	% volume	Total Sulfur Compounds	0 μg/BTU
Total Halogen as Cloride		0	% volume	Total Halogen as Cloride	0 μg/BTU
Total Ammonia		0	% volume	Total Ammonia	0 μg/BTU
Siloxanes				Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane		0	% volume		- F2
Trimethyl silanol		ō	% volume		
Hexamethyldisiloxane (L2)		Ö	% volume	Calculated fuel contaminant analysis	will depend on
Hexamethylcyclotrisiloxane (I	73)	0	% volume	the entered fuel composition and sel	•
Octamethyltrisiloxane (L3)	33)	0	% volume	model.	cieu engine
Octamentylinisiloxane (L3)	(D4)	0	** ***	mouer.	
Octomothylavalatatracilevasa		U	% volume		
Octamethylcyclotetrasiloxana	• •	_	0/		
Decamethyltetrasiloxane (L4)) '	0	% volume		
Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxar	ne (D5)	Ō	% volume		
Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxar Dodecamethylpentasiloxane	ne (D5) (L5)	0	% volume % volume		
Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxar	ne (D5) (L5)	Ō	% volume		

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

Gas Compression

0.15	NOx SELECTION (g/bhp-hr):	1200	ENGINE SPEED (rpm):
JW, IC + OC	COOLING SYSTEM:	7040	DISPLACEMENT (in3):
130	INTERCOOLER WATER INLET (°F):	9.7:1	COMPRESSION RATIO:
180	JACKET WATER OUTLET (°F):	ESM2	IGNITION SYSTEM:
100	JACKET WATER CAPACITY (gal):	Water Cooled	EXHAUST MANIFOLD:
11	AUXILIARY WATER CAPACITY (gal):	Rich Burn, Turbocharged	COMBUSTION:
190	LUBE OIL CAPACITY (gal):	24250	ENGINE DRY WEIGHT (lbs):
20	MAX. EXHAUST BACKPRESSURE (in. H2O):	0.38% CO	AIR/FUEL RATIO SETTING:
15	MAX. AIR INLET RESTRICTION (in. H2O):	102.7	ENGINE SOUND LEVEL (dBA)
98.9	EXHAUST SOUND LEVEL (dBA)	ESM2 Controlled	IGNITION TIMING:

SITE CONDITIONS:			
FUEL:	Natural Gas	ALTITUDE (ft):	3000
FUEL PRESSURE RANGE (psig):	40 - 60	MAXIMUM INLET AIR TEMPERATURE (°F):	100
FUEL HHV (BTU/ft3):	1,274.3	FUEL WKI:	59.7
FUEL LHV (BTU/ft3):	1,151.9		

SITE SPECIFIC TECHNICAL DATA		MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 100 °F			
POWER RATING			AIR TEMP	100%	95%	76%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr		1881 0	1881 0	1787 -	1425
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL	% BHP		34.1 1881	34.1 1881	34.1 1787	33.5 1425
based on no auxiliary engine driven equipment						

AVAILABLE TURNDOWN SPEED RANGE	RPM	RPM			900 - 1200			
FUEL CONSUMPTION								
FUEL CONSUMPTION (LHV)	BTU/BHP-hr	7461	7461	7479	7601			
FUEL CONSUMPTION (HHV)	BTU/BHP-hr	8253	8253	8273	8409			
FUEL FLOW based of	on fuel analysis LHV SCFM	203	203	193	157			

HEAT REJECTION					
JACKET WATER (JW)	BTU/hr x 1000	3842	3842	3687	3085
LUBE OIL (OC)	BTU/hr x 1000	497	497	489	455
INTERCOOLER (IC)	BTU/hr x 1000	726	726	657	413
EXHAUST	BTU/hr x 1000	3844	3844	3639	2885
RADIATION	BTU/hr x 1000	609	609	602	577

EMISSIONS (CATALYST OUT):					
NOx (NO + NO2)	g/bhp-hr	0.15	0.15	0.15	0.15
CO	g/bhp-hr	0.3	0.3	0.3	0.3
THC	g/bhp-hr	0.2	0.2	0.2	0.2
NMHC	g/bhp-hr	0.09	0.09	0.09	0.14
NM,NEHC (VOC)	g/bhp-hr	0.04	0.04	0.04	0.06
CO2	g/bhp-hr	480	480	482	490
CO2e	g/bhp-hr	483	483	484	494
CH2O	g/bhp-hr	0.001	0.001	0.001	0.001
CH4	g/bhp-hr	0.11	0.11	0.11	0.16

AIR INTAKE / EXHAUST GAS						
INDUCTION AIR FLOW		SCFM	2626	2626	2501	2027
EXHAUST GAS MASS FLOW		lb/hr	12210	12210	11627	9424
EXHAUST GAS FLOW	at exhaust temp, 14.5 psia	ACFM	8683	8683	8237	6572
EXHAUST TEMPERATURE		°F	1140	1140	1134	1109

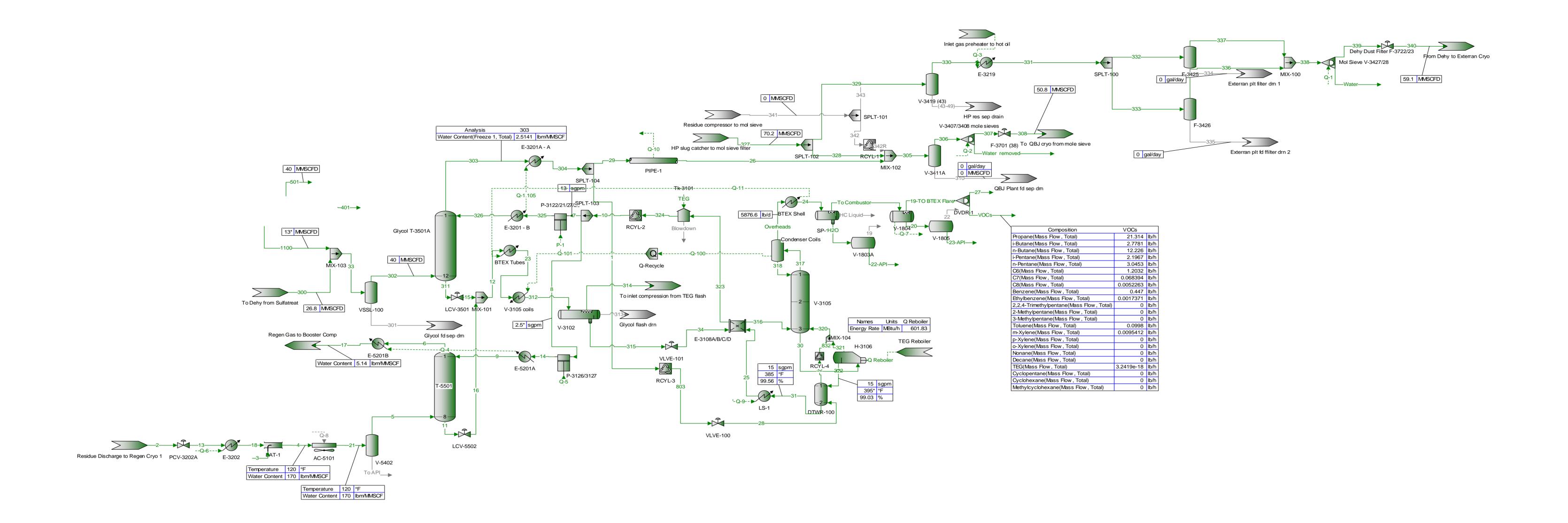
HEAT EXCHANGER SIZING12				
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1	000	4357
TOTAL AUXILIARY WATER CIRCUI	T (IC + OC)	 BTU/hr x 1	000	1387

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	36

Gas Compression

FUEL COMPOSITION					
HYDROCARBONS:	Mole or	Volume %		FUEL:	Natural Gas
Methane	CH4	69.39		FUEL PRESSURE RANGE (psig):	40 - 60
Ethane	C2H6	19.31		FUEL WKI:	59.7
Propane	C3H8	6.64			
Iso-Butane	I-C4H10	0.43		FUEL SLHV (BTU/ft3):	1131.89
Normal Butane	N-C4H10	0.48		FUEL SLHV (MJ/Nm3):	44.51
Iso-Pentane	I-C5H12	0.0692		TOLL CLITT (MOTHING).	74.01
Normal Pentane	N-C5H12	0.0815		FUEL LHV (BTU/ft3):	1151.93
Hexane	C6H14	0.1201		FUEL LHV (MJ/Nm3):	45.30
Heptane	C7H16	0.1201		TOLE CITY (MONTHIO).	45.50
Ethene	C2H4	0		FUEL HHV (BTU/ft3):	1274.26
		0		· · · · · · · · · · · · · · · · · · ·	
Propene	C3H6	U		FUEL HHV (MJ/Nm3):	50.11
	SUM HYDROCARBONS	98.921		FUEL DENSITY (SG):	0.75
NON-HYDROCARBONS:					
Nitrogen	N2	2.183		Standard Conditions per ASTM D3588-91 (60°F an	d 14.696psia] and
Oxygen	O2	0	•	ISO 6976:1996-02-01[25, V(0;101.325)]. Based on the fuel composition, supply pressure an	d tomooratura liquid
Helium	He	0		hydrocarbons may be present in the fuel. No liquid	
Carbon Dioxide	CO2	0.8857		allowed in the fuel. The fuel must not contain any li	
Carbon Monoxide	со	0		recommends both of the following:	
Hydrogen	H2	0		 Dew point of the fuel gas to be at least 20°F (11 measured temperature of the gas at the inlet of the 	
Water Vapor	H2O	ō		A fuel filter separator to be used on all fuels exc	
		_		natural gas.	,
	TOTAL FUEL	99.99		Refer to the 'Fuel and Lubrication' section of Techt the Waukesha Application Engineering Departmen information on fuels, or LHV and WKI* calculations * Trademark of General Electric Company	t for additional
FUEL CONTAMINANTS Total Sulfur Compounds Total Halogen as Cloride Total Ammonia		0 0	% volume % volume % volume	Total Sulfur Compounds Total Halogen as Cloride Total Ammonia	0 μg/BTU 0 μg/BTU 0 μg/BTU
Siloxanes				Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane		0	% volume		
Trimethyl silanol		0	% volume		
Hexamethyldisiloxane (L2)		0	% volume	Calculated fuel contaminant analysis	
Hexamethylcyclotrisiloxane (D3)		0	% volume	the entered fuel composition and sele	cted engine
Octamethyltrisiloxane (L3)		0	% volume	model.	
Octamethylcyclotetrasiloxane (D4)		0	% volume		
Decamethyltetrasiloxane (L4)		0	% volume		
Decamethylcyclopentasiloxane (D5	5)	0	% volume		
Dodecamethylpentasiloxane (L5)	•	0	% volume		
Dodecamethylcyclohexasiloxane (I	D6)	Ò	% volume		
Others	•	0	% volume		

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.



Gas Compression

NOTES

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5 %. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with GE supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOX, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of ± 7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of ± 7%.
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 178.1 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" \$7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.
- 21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

SPECIAL REQUIREMENTS

Process Streams		19-TO BTEX Flare	27	302	VOCs
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	V-1804	DVDR-1	VSSL-100	DVDR-1
	To Block:	DVDR-1		Glycol T-3501A	
Mole Fraction	%				
N2		0.97	1.64	1.55	0.00
CO2		2.05	3.46	0.67	0.00
Methane		29.00	48.80	43.43	0.00
Ethane		26.58	44.73	28.61	0.00
Propane		23.47	0.00	18.15	57.83
i-Butane		2.32	0.00	1.57	5.72
n-Butane		10.21	0.00	4.66	25.17
i-Pentane		1.48	0.00	0.50	3.64
n-Pentane		2.05	0.00	0.56	5.05
C6		0.68	0.00	0.11	1.67
C7		0.03	0.00	0.00	0.08
C8		0.00	0.00	0.00	0.01
Water		0.81	1.37	0.19	0.00
H2S		0.00	0.00	0.00	0.00
Oxygen		0.00	0.00	0.00	0.00
Benzene		0.28	0.00	0.00	0.68
Ethylbenzene		0.00	0.00	0.00	0.00
2,2,4-Trimethylpentane		0.00	0.00	0.00	0.00
2-Methylpentane		0.00	0.00	0.00	0.00
3-Methylpentane		0.00	0.00	0.00	0.00
Toluene		0.05	0.00	0.00	0.13
m-Xylene		0.00	0.00	0.00	0.01
p-Xylene		0.00	0.00	0.00	0.00
o-Xylene		0.00	0.00	0.00	0.00
Nonane		0.00	0.00	0.00	0.00
Decane		0.00	0.00	0.00	0.00
TEG		0.00	0.00	0.00	0.00
Cyclopentane		0.00	0.00	0.00	0.00
Cyclohexane		0.00	0.00	0.00	0.00
Methylcyclohexane		0.00	0.00	0.00	0.00
Therminol 55					
Argon					

Process Streams		19-TO BTEX Flare	27	302	VOCs
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	V-1804	DVDR-1	VSSL-100	DVDR-1
	To Block:	DVDR-1		Glycol T-3501A	
Property	Units				
Mole Fraction Vapor	%	100.0	99.4	100.0	99.6
Temperature	°F	40.0	40.0	123.9	40.0
Pressure	psia	0.30	0.30	893.00	0.30
Molar Flow	lbmol/h	2	1	4368	1
Mass Flow	lb/h	72	29	125892	43
Mass Enthalpy	Btu/lb	-1252.61	-1683.73	-1348.49	-970.85
Molecular Weight	lb/lbmol	35.04	23.51	28.82	51.92
Mass Density	lb/ft^3	0.10	0.07	6.49	0.15
Std Vapor Volumetric Flow	MMSCFD	0	0	40	0
Std Liquid Volumetric Flow	sgpm	0	0	626	0
Compressibility		0.987	0.989	0.644	0.969
Specific Gravity		1.210		0.995	
Mass Cp	Btu/(lb*°F)	0.398	0.427	0.770	0.382
Dynamic Viscosity	cP	0.009		0.014	
Kinematic Viscosity	cSt	5.444		0.139	
Thermal Conductivity	Btu/(h*ft*°F)	0.011		0.021	
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	1789.3	1168.0	1510.0	2699.0
Gross Ideal Gas Heating Value	Btu/ft^3	1951.3	1285.2	1652.7	2926.8
Pseudo Critical Temperature	°F	99.8	-7.8	33.9	257.4
Pseudo Critical Pressure	psia	623.15	704.43	638.07	558.64
Vapor Volumetric Flow	ft^3/h	727	433	19404	289
Liquid Volumetric Flow	gpm	91	54	2419	36