

SUBMITTED ELECTRONICALLY VIA CERIS

August 2, 2024

Mr. Jim Semerad North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58501-1947

ONEOK ROCKIES MIDSTREAM, L.L.C. NIGHTHAWK COMPRESSOR STATION PERMIT TO CONSTRUCT

Dear Mr. Semerad,

ONEOK Rockies Midstream, L.L.C. (ORM) proposes to construct the Nighthawk Compressor Station, a new facility in Dunn County. ORM submits this Permit to Construct application to authorize construction of the facility, which will be a minor source for criteria pollutants.

Nighthawk Compressor Station will consist of two (2) 2,750-hp Caterpillar G3608 compressor engines, three (3) 400-bbl condensate tanks, one (1) 400-bbl produced water tanks, one (1) 400-bbl methanol tank, and one (1) process/VOC flare for controlling the condensate tank vapor and process blowdowns. Associated emission sources include condensate truck loading, fugitive emissions and other miscellaneous vents and blowdowns.

If you need additional information or have any questions, please call me at 918-588-7862 or Joshua.Hills@oneok.com.

Sincerely,

Joshua Hills

Environmental Professional

xc: V. Danzeisen/S. Nies/D. Vande Bossche/R. Brown/K. Hanner (.pdf)
Tulsa Environmental Files – Nighthawk Compressor Station – Permit Actions

Permit to Construct

Nighthawk Compressor Station

ONEOK Rockies Midstream, L.L.C.

Submitted to NDDEQ Air Quality Division August 2024

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station August 2024

Introduction

ONEOK Rockies Midstream, L.L.C. (ORM) proposes to construct the Nighthawk Compressor Station, a new facility in Dunn County. ORM submits this Permit to Construct to authorize construction of the facility, which will be a minor source of criteria pollutants.

Facility Equipment

Nighthawk Compressor Station will consist of two (2) 2,750-hp Caterpillar G3608 compressor engines, three (3) 400-bbl condensate tanks, one (1) 400-bbl produced water tank, one (1) 400-bbl methanol tank, and one (1) process/VOC flare for controlling tank emissions and emergency relief venting from all equipment. Associated emission sources include condensate truck loading, fugitive emissions and miscellaneous vents and blowdowns.

Process Description

A pipeline gathering system transports field natural gas from wells through an inlet separator where free liquids are removed and stored in the condensate tanks. Natural gas then passes through a suction header and is routed to the compressors, which boost gas pressure. The compressor units discharge natural gas into a pipeline for transmission. Condensate is transported off-site via tank truck for sales. Emissions from fugitive components and miscellaneous vents and blowdowns also occur at the facility. An emergency flare utilized is to combust compressor blowdowns and for emergency upsets.

Regulatory Applicability

The facility is a natural gas compressor station that falls under the North American Industrial Classification System (NAICS) code 211130 (formerly Standard Industrial Classification (SIC) 1311).

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ, Stationary Spark Ignition Internal Combustion Engines (SI-ICE) promulgates emission standards for all new SI engines ordered after June 12, 2006, and all SI engines modified or reconstructed after June 12, 2006, regardless of size. The specific emission standards (either in g/hp-hr or as a concentration limit) vary based on engine class, engine power rating, leanburn or rich-burn, fuel type, duty (emergency or non-emergency), and various manufacture dates. The compressor engines were manufactured after July 1, 2010; therefore, are subject to the Stage 2 emissions limitations of this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOO, Crude Oil and Natural Gas Production, Transmission and Distribution, establishes emission standards for the following equipment that commences construction, modification, or reconstruction after August 23, 2011 and on or before September 18, 2015 at crude oil and natural gas production, transmission or distribution facilities:

- 1. Each single gas well;
- 2. Single centrifugal compressors using wet seals located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 3. Single reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment and not located at a natural gas processing plant;
- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station August 2024

- 6. Single storage vessels located in the oil and natural gas production segment, natural gas processing segment, or natural gas transmission and storage segment with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. All equipment, except compressors, within a process unit at an onshore natural gas processing plant;
- 8. Sweetening units located at onshore natural gas processing plants.

All potentially affected equipment is constructed after September 18, 2015 and is not subject to this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOa, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after September 18, 2015 at crude oil and natural gas production, transmission or distribution facilities:

- 1. Each single oil or gas well that conducts a completion following hydraulic fracturing or refracturing;
- 2. Single centrifugal compressors using wet seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, not located at a natural gas processing plant;
- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;
- 6. Single storage vessels with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. The group of all equipment within a process unit;
- 8. The group of fugitive emissions equipment at a compressor station;
- 9. The group of fugitive emissions equipment at a well site;
- 10. Sweetening units located at onshore natural gas processing plants;
- 11. Pneumatic pumps at natural gas processing plants and well sites.

All potentially affected equipment is constructed after December 6, 2022 and is not subject to this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOb, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after December 6, 2022 at crude oil and natural gas facilities:

- 1. Each single oil or gas well;;
- 2. Single centrifugal compressors using wet or dry seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Each collection of natural gas-driven process controllers at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 5. Storage vessel batteries with either the potential for VOC emissions equal to or greater than 6 tons per year or the potential for methane emissions equal to or greater than 20 tons per year;
- 6. The group of all equipment within a process unit at an onshore natural gas processing plant;
- 7. Sweetening units:
- 8. The group of all natural gas-driven pumps at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 9. The group of fugitive emissions equipment at a well site, centralized production facility or compressor station;

Potentially affected equipment includes the reciprocating compressors associated with each of the compressor engines. The condensate and produced water tanks were constructed after December 6, 2022 and are subject to this subpart. The facility meets the definition of a new compressor station and therefore is subject to the leak detection requirements of this subpart.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station August 2024

National Emission Standards for Hazardous Air Pollutants 40 CFR Part 63 Subpart ZZZZ, Reciprocating Internal Combustion Engines (RICE), affects any existing, new or reconstructed stationary RICE located at a major or area source of HAP emissions. Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. Since the compressor engines are subject to 40 CFR Part 60 Subpart JJJJ, they automatically satisfy the requirements of Subpart ZZZZ by complying with NSPS Subpart JJJJ. There are no further requirements under Subpart ZZZZ for these engines.

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY **DIVISION OF AIR QUALITY** SFN 8516 (9-2021)

SECTION A - FAC	SILITY INFO	RMAT	ION					
Name of Firm or Org ONEOK Rockies Midstre								
Applicant's Name Dick Vande Bossche								
Title Vice President, ONEOK	Rockies Midstre	am Opera		Telephone Number E-mail Addr 406) 433-8710 E-mail Addr dick.vandebos			ress ssche@oneok.com	
Contact Person for A Joshua Hills				,		1		
Title Environmental Profession	nal			Telephone Nu 918) 588-7862	mber	E-mail Add Joshua.Hills@		
Mailing Address (Stre	eet & No.)		•			•		
City Tulsa				State OK			ZIP Code 74103	
	Facility Name Nighthawk Compressor Station							
Facility Address (Stre	et & No.)							
City Killdeer				State ID			ZIP Code 58640	
County Coordinates NAD 83 in Decimal Degrees (to forth decimal degree)							th decimal degree)	
Dunn		Latitud 47.634)		Longitude -103.08006	ongitude 103.08006600	
Legal Description of	Facility Site							
Quarter NW	Quarter NW		Sectio 20	on Townsl		ship	Range 97W	
Land Area at Facility 10 Acres (or)		q. Ft.		MSL Elevation at Facility 2214 ft				
SECTION B – GE	NERAL NA					Cton dowd In	مار رمان ا	
Describe Nature of B	usiness			an Industry System Numb	oer	Standard Industrial Classification Number (SIC)		
Natural Gas G	athering		2	11130		1311		
<u>'</u>								
SECTION C - GE								
Type of Permit? Permit to Construct (PTC) Permit to Operate (PTO)								
If application is for a		struct, p	ease p					
Planned Start Constr 11/2023		Planned E 02/2025	Planned End Construction Date 02/2025					

SECTION D – SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

	INCLUDED ON THIS PERMIT APPLICATION											
		Pe	ermit to	Constr	uct	Minor Source Permit to Operate						
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
C-1	2,750-hp Caterpillar G3608 Engine	\checkmark										
C-2	2,750-hp Caterpillar G3608 Engine	\checkmark										
FL-1	Process/VOC Flare	\checkmark										
TK-1 - TK-3	Three 400-bbl Condensate Tanks	\checkmark										
WTK-1	One 400-bbl Produced Water Tank	\checkmark										
MTK-1	One 400-bbl Methanol Tank	\checkmark										
TL-1	Truck Loading	\checkmark										
FUG	Fugitive Emissions	\checkmark										
BD	Miscellaneous Venting and Blowdowns to Atr	\checkmark										

Add additional pages if necessary

SECTION D2 – APPLICABLE REGULATIONS

Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)				
Facility-wide	NSPS OOOOb (Fugitive Monitoring)				
C-1 - C-2	NSPS OOOOb (Compressor Rod Packing)				
C-1 - C-2	NSPS JJJJ/NESHAP ZZZZ				
TK-1 - TK-3	NSPS OOOOb				
FL-1	NSPS OOOOb				

SECTION E - TOTAL POTENTIAL EMISSIONS

Pollutant	Amount (Tons Per Year)
NO _x	54.56
СО	64.34
PM	1.81

SFN 8516 (9-2021) Page 3

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	1.81
PM _{2.5} (filterable and condensable)	1.81
SO ₂	0.27
VOC	82.79
GHG (as CO ₂ e)	28002.44
Largest Single HAP	4.25
Total HAPS	8.49

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORMS

Indicate which of the following forms are attached and made part of the application							
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect				
	(SFN 8532)		Heating (SFN 8518)				
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources				
	(SFN 8522)		(SFN 8329)				
	Natural Gas Processing Plants		Manufacturing or Processing Equipment				
	(SFN 11408)		(SFN 8520)				
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank				
	(SFN 58923)		(SFN 8535)				
	Flares		Internal Combustion Engines and Turbines				
	(SFN 59652)		(SFN 8891)				
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration				
	(SFN 8524)		(SFN 14334)				

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	Process Description and Regulatory Applicability	4.	Emission Calculations
2.	Area Map	5.	Support Documentation
3.	Process Flow Diagram	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature	Dick Vande Bossche	Date 8/9/2024
	67B797C4193640F	

PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION A	A – GENEF	RAL INF	ORMA	ATION
-----------	-----------	---------	------	-------

SECTION A	- GLIVLINA	L 1141	ORIVIATION					
Name of Firm or				Facility Name				
ONEOK Rockies M	lidstream, L.L.	.C.		Coyote Compressor Station				
SECTION B -	- FACILITY	' AND	UNIT INFORM	ATIO	V			
Source ID Numb	Source ID Number (From form SFN 8516)							
C-1 - C-2 (Each)								
Type of Unit [Stationar	y Natu	ral Gas-Fired Engir	ne	☐ Emerge	ency Use	Only	
(check all │ □ Stationary Diesel and Dual Fuel Engine │ ■ Non-Emergency Use								
that apply)								
<u> </u>			ral Gas-Fired Turbi	ne	│	d Respon	se	
	Other – S	pecify						
SECTION C -	- MANUFA	CTU	RER DATA					
Make			Model				Date of Manufacture	
Caterpillar			G3608 A-4			20	024	
Reciprocating In	iternal Comb	oustion	Engine					
		Spark	gnition		Compression	n Ignition		
■ 4 Stro	ke	☐ 2 S	troke		Rich Burr	n 🔳	Lean Burn	
Maximum Rating	g (BHP @ rp	om)		Operating Capacity (BHP @ rpm)				
2,750-HP				2,750-l	1 P			
Engine Subject			_			_		
	R 60, Subpai		40 CFR 60				CFR 63, Subpart ZZZZ	
	R 60, Subpai	t 000	OO), Subj	oart 0000a			
Turbine	D(//) B		D (; (UD)	Dry Low Emissions? Yes No				
Heat Input (MMI	Btu/hr) N	/laximi	ım Rating (HP)	75% Rating (HP) Efficiency			-fficiency	
Tuel	oina Cubicat	to: [nort C		- D 60 Cu	hnart VVVV	
<u> I uri</u>	oine Subject	ιο. [☐ 40 CFR 60, Sub	part G	<u> </u>	-R 60, Su	bpart KKKK	
0=0=10115								
SECTION D -		SED						
Natural Gas (10	⁶ cu ft/year)			Percent Sulfur Percent H ₂ S			Percent H₂S	
147.159								
Oil (gal/year)				Percent Sulfur Grade No.			Frade No.	
LD 0 (1/				Other Consists				
LP Gas (gal/yea	ir)			Other – Specify:				
<u> </u>								
			RATING SCHE					
	Hours Per Day Days Per Week Weeks Per Year						oduction Season	
24	7		52	8760		(if any)		
SECTION F -		<u>ARAI</u>	METERS					
Emission Point I	D Number					ht Above	Ground Level (feet)	
					30			
Stack Diameter	(feet at top)		Discharged (SCF	M)	Exit Temp	(°F)	Gas Velocity (FPS)	
4.5		17,32	27		756		18.16	

SFN 8891 (3-2019) Page 2

SECTION G - EMISSION CONTROL EQUIPMENT

•	
Is any emission control equipment installed on this unit?	
☐ No ☐ Yes – Complete and attach form SFN 8532	

SECTION H – MAXIMUM AIR CONTAMINANTS EMITTED

	Maximum Pounds Per	Amount (Tons Per	
Pollutant	Hour	Year)	Basis of Estimate*
NOx	6.06 (Each)	26.55 (Each)	Manufacturer data
со	6.85 (Each)	30.01 (Each)	Manufacturer data
РМ	0.20 (Each)	0.88 (Each)	AP-42 Table 3.2-2 (7/00)
PM ₁₀ (filterable and condensable)	0.20 (Each)	0.88 (Each)	AP-42 Table 3.2-2 (7/00)
PM _{2.5} (filterable and condensable)	0.20 (Each)	0.88 (Each)	AP-42 Table 3.2-2 (7/00)
SO ₂	0.01 (Each)	0.05 (Each)	AP-42 Table 3.2-2 (7/00)
voc	3.64 (Each)	15.93 (Each)	Manufacturer data
GHG (as CO ₂ e)	2,904.89 (Each)	12,723.43 (Each)	40 CFR Tables C-1 and C-2
Largest Single HAP	0.49 (Each)	2.12 (Each)	Formaldehyde: Manufacturer data
Total HAPS	0.60 (Each)	2.64 (Each)	AP-42 Table 3.2-2 (7/00)

^{*} If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS?	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.
■ YES □ NO	

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

SECTION A - GENERAL INFORMATION

SECTION A - G	ENERAL INFO	RMATION				
Name of Firm or Or ONEOK Rockies Mids		Facility Nighthawk	Name Compressor Station			
Source ID No. of Education C-1 - C-2 (Each)	quipment being C	controlled				
SECTION B - E	OHIPMENT					
	lone [Multiclone Bag	house	ostatic Precipitator		
☐ Wet Scrubber ☐ Spray Dryer ☐ Flare/Combustor						
■ Othe	er – Specify: O	xidation Catalyst				
Name of Manufactu		Model Number SP-RHSIGA-54-TBD-HSG	Date to Be	Installed		
Application:		TRIBION OF THE TICE	100			
Boiler	Kiln	Engine	Other - Specify:			
Pollutants Remove	d	CO	CH2O	VOC		
Design Efficiency (%)					
Operating Efficienc	y (%)					
Data provided by		operating efficiency: r				
SECTION CD -	GAS CONDITI	ONS				
Gas Conditions		Inlet	Outlet			
Gas Volume (SCFN	Л ; 68°F; 14.7 psia					
Gas Temperature (°F)					
Gas Pressure (in. F	H ₂ O)					
Gas Velocity (ft/sec	;)					
Pollutant Concentration	Pollutant	Unit of Concentration				
(Specify Pollutant and Unit of	NOx	g/hp-hr	1.0	1.0		
Concentration)	CO	g/hp-hr	2.98	1.13		
	CH2O	g/hp-hr	0.18	0.08		
	VOC	g/hp-hr	0.77	0.60		
Pressure Drop Thro	ough Gas Cleanir	na Device (in HaO)	•	•		

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION	Δ	GENER	AI IN	VEO.	RM A	MOIT
SECTION	_	GLIALIZ	\sim \sim \sim	11 U	171417	1 I U I I

Name of Firm ONEOK Rockie	or Organization s Midstream, L.L.C.			Name wk Compressor S	tation	
	B – TANK DATA		1 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Source ID Nu	mber (From SFN 8516)					
TK-1 Capacity	Barrels			Gallons		
	400	11-1-1-1		16,800		VAC-III.
Dimensions	Diameter 12	Height 20		Length		Width
Shape	Cylindrical	□s	pherical		Other –	Specify:
Materials of Construction	(i.e., steel)					
Construction	Riveted	■ V	Velded		Other –	Specify:
Color Tan						
Condition	■ Good	F	air		Poor	
Status	■ New Constru	uction	Iteration		Existing ve Date	Constructed):
Type of	Fixed Roof			External		
Tank	☐ Variable Var ☐ Pressure (Io			☐ Internal ☐ Other –		
Type of Roof	☐ Pan	Double Deck			Othe	r – Specify:
Type of Seal	Metallic Shoe Seal		Mounteent Seal		Vapor	Mounted ent Seal
	Primary Seal Only	☐ Pri	mary Se		☐ Priı	mary Seal Only
	☐ With Rim Mounted☐ With Shoe MounteSecondary Seal			lounted Seal ner Shield		h Rim Mounted Seal h Weather Shield
SECTION C	- TANK CONTENT	S				
Name all liqui	ds, vapors, gases, or m lbs per gal) or A.P.I.		materials	s to be stored in	the tan	k.
1	condensate					
SECTION D	– VAPOR DISPOS					
☐ Atmosphe	ere 🔲 Vapor Recover	y Unit 🔳 Fla	ıre 🗌 E	Enclosed Comb	ustor	Other – Specify:

SFN 8535 (3-2019) Page 2

SECTION E - VAPOR PRESSURE DATA

l baia	
Maximum True Vapor Pressure	Maximum Reid Vapor Pressure
12.87 psia	
SECTION F - OPERATIONAL DATA	
Maximum Filling Rate	Vapor Space Outage
(barrels per hour or gallons per hour)	(See AP-42, 7.1-92, Equation 1-15)
200 bbl/hr	
Average Throughput	Tank Turnovers per Year

SECTION G - SOLUTION STORAGE

(barrels per day or gallons per day)

685 bbl/day

02011011 0 002011011 01011/102	CECTION C COECTION CTONNOL					
If material stored is a solution, supply the following information:						
Name of Solvent Name of Material Dissolved						
Concentration of Material Dissolved (% by weight or	% by volume or lbs/gal)					

SECTION H – AIR CONTAMINANATS EMITTED

Pollutant*	Maximum Pounds Per Hour	Tons Per Year	Basis and Calculations for Quantities (Attach separate sheet if needed)
VOC	2.32 (Each)	10.16 (Each)	ProMax Process Simulation
CO2e	5.20 (Each)	22.80 (Each)	ProMax Process Simulation

^{*} Include an estimate of greenhouse gas emissions (CO₂e)

SECTION I - STANDARDS OF PERFORMANCE

OLOTION I - OTANDANDO OF I LIN ONMANOL
Tank subject to:
☐ 40 CFR 60, Subpart OOOO ■40 CFR 60, Subpart OOOOæb
Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? ■ Yes □ No − Explain:
Tank will comply with the requirements under OOOOb.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTI	ON A -	- GENERA	AL INFO	ORMAT	ION
\circ			<u>, </u>		-

Name of Firm or Organization Facility Name ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station						
Nightiawk Compressor Station						
	B – TANK DATA					
Source ID Nu TK-2 - Tk-3 (Ea	mber (From SFN 8516)					
Capacity	Barrels		Gallon	 IS		
Сарасну	400		16,800			
Dimensions	Diameter 12	Height 20	Length	ו	Width	
Shape	Cylindrical		Spherical	☐ Other –	Specify:	
Materials of Construction	(i.e., steel)					
Construction	Riveted	■ V	Velded	Other –	Specify:	
Color Tan						
Condition	■ Good	☐ F	air	☐ Poor		
Status	■ New Constr	uction	Iteration	☐ Existing (Give Date	Constructed):	
Type of	■ Fixed Roof			External Floating	9	
Tank	☐ Variable Va ☐ Pressure (Id		□ I	nternal Floating Other – Specify:		
Type of Roof	☐ Pan [Double Deck	☐ Pontoo	n Othe	r – Specify:	
Type of Seal	Metallic Shoe Seal		Mounted ent Seal	Vapor	Mounted ent Seal	
•	☐ Primary Seal Only		mary Seal Only		mary Seal Only	
	☐ With Rim Mounted ☐ With Shoe Mounted		th Rim Mounted th Weather Shie	_	h Rim Mounted Seal h Weather Shield	
	Secondary Seal			I		
	- TANK CONTENT					
	ds, vapors, gases, or m lbs per gal) or A.P.I.	ixtures of such	materials to be s	stored in the tan	k.	
Natural gas	condensate					
	- VAPOR DISPOS					
Atmosphe	ere 🔃 Vapor Recove	ry Unit 🔳 Fla	ıre	d Combustor	☐ Other – Specify:	

SFN 8535 (3-2019) Page 2

CECTION	_ \			JRE DATA
		VAPUR	PKE221	

SECTION E – VAPOR PRESSURE DATA							
psia							
Maximum True Vapor Pressure 12.87 psia			Maximum	Reid Vapor Pressure			
SECTION F - OP	ERATIONAL DATA	Α					
Maximum Filling Rate Vapor Space Outage							
(barrels per hour or games 200 bbl/hr			(See AP-42, 7.1-92, Equation 1-15)				
Average Throughput (barrels per day or g 685 bbl/day			Tank Turr	novers per Year			
SECTION G - SC	LUTION STORAG	E					
	a solution, supply the f	following in					
Name of Solvent			Name of I	Material Dissolved			
Concentration of Ma	terial Dissolved (% by	weight or	% by volum	ne or lbs/gal)			
SECTION H - All	R CONTAMINANA	TS EMITT	ΓED				
Pollutant*	Maximum Pounds Per Hour	Tons P	er Year	Basis and Calculations for Quantities (Attach separate sheet if needed)			
VOC	2.32 (Each)			ProMax Process Simulation			
	,	,	<u>, , , , , , , , , , , , , , , , , , , </u>				
* Include an estimate	e of greenhouse gas e	emissions (CO ₂ e)				
	ANDARDS OF PER						
Tank subject to:	☐ 40 CFR 60, Subpart	t K 🗌 40) CFR 60, \$	Subpart Ka 🔲 40 CFR 60, Subpart Kb			
☐ 40 CFR 60, Subpart OOOO ■40 CFR 60, Subpart OOOOæb							
Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? I Yes No - Explain:							
Tanks will comply with the requirements under OOOOb.							

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

☐ Vapor Recovery Unit

Atmosphere

SECTION A - GENERAL INFORMATION

	Name of Firm or Organization ONEOK Rockies Midstream, L.L.C. Facility Name Nighthawk Compressor Station						
Nigntnawk Compressor Station							
	- TANK DATA						
Source ID Nur WTK-1	mber (From SFN 8516)						
Capacity	Barrels 400		Gallo 16,800				
Dimensions	Diameter 12	Height 20	Lengt	th	Width		
Shape	Cylindrical	□s	pherical	Other –	Specify:		
Materials of Construction	(i.e., steel)						
Construction	☐ Riveted	■ W	/elded	Other –	Specify:		
Color Tan							
Condition	■ Good	☐ Fa	air	☐ Poor			
Status	■ New Constru	uction	teration	☐ Existing (Give Date	Constructed):		
Type of Tank	■ Fixed Roof □ Variable Vap □ Pressure (lo			External Floating Internal Floating Other – Specify:			
Type of Roof	☐ Pan	Double Deck	☐ Ponto	_	r – Specify:		
Type of Seal	Metallic Shoe Seal		Mounted		Mounted		
	Resilient Seal Primary Seal Only With Rim Mounted Seal With Shoe Mounted Secondary Seal Resilient Seal Primary Seal Only With Rim Mounted Seal With Rim Mounted Seal With Weather Shield With Weather Shield						
SECTION C	SECTION C – TANK CONTENTS						
Name all liquids, vapors, gases, or mixtures of such materials to be stored in the tank. Give density (lbs per gal) or A.P.I.							
Produced Water - Tanks are assumed to contain 99% produced water and 1%							
condensate. Therefore, produced water emissions are assumed to be 1% of those calculated for condensate.							
calculated for condensate.							
SECTION D - VAPOR DISPOSAL							

■ Flare ☐ Enclosed Combustor ☐ Other – Specify:

SFN 8535 (3-2019) Page 2

SECTION E – VAPOR PRESSURE DATA

psia	
Maximum True Vapor Pressure 12.87 psia	Maximum Reid Vapor Pressure

SECTION F - OPERATIONAL DATA

Maximum Filling Rate (barrels per hour or gallons per hour) 200 bbl/hr	Vapor Space Outage (See AP-42, 7.1-92, Equation 1-15)	
Average Throughput (barrels per day or gallons per day) 190 bbl/day	Tank Turnovers per Year	

SECTION G – SOLUTION STORAGE

If material stored is a solution, supply the following information:					
Name of Solvent Name of Material Dissolved					
Concentration of Material Dissolved (% by weight or % by volume or lbs/gal)					
Concentration of Material Biocontou (70 by Wolght of 70 by Volume of Iborgal)					

SECTION H – AIR CONTAMINANATS EMITTED

Pollutant*	Maximum Pounds Per Hour	Tons Per Year	Basis and Calculations for Quantities (Attach separate sheet if needed)
VOC	0.01	0.04	ProMax Process Simulation
CO2e	0.02	0.10	ProMax Process Simulation

^{*} Include an estimate of greenhouse gas emissions (CO₂e)

SECTION I - STANDARDS OF PERFORMANCE

Tank subject to: 40 CFR 60, Subpart K 40 CFR 60, Subpart Ka 40 CFR 60, Subpart Kb
☐ 40 CFR 60, Subpart OOOO ■40 CFR 60, Subpart OOOOæb
Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? ■ Yes □ No − Explain:
Tank will comply with the requirements under OOOOb.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8520 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Equipment items operating as a functional unit may be grouped as one application			
Name of Firm or Organization Facility Name			
ONEOK Rockies Midstream, L.L.C.	Nighthawk Compressor Station		

SECTION B - EQUIPMENT INFORMATION

· · · · · · · · · · · · · · · · · · ·				
Source ID Number (From SFN 8516) TL-1				
Type of Unit or Process (rotary dryer, cupola furnace Condensate Tank Truck Loading	, crusher, pelletizer, etc.)			
Make N/A	Model N/A	Date Installed		
Capacity (manufacturer's or designer's guaranteed				
maximum) 11,038,000 gallons	10,500,000 gallons			
Brief description of operation of unit or process:				
Loading operation of the condensate storage tanks at the facility.				

SECTION C - NORMAL OPERATING SCHEDULE

Hours Per Day	Days Per Week	Weeks Per Year	Peak Production	Dates of Annual
24	7	52	Season (if any)	Shutdown
- '		02	N/A	N/A
			1 4/ / 3	1 4/ / 3

SECTION D – RAW MATERIALS INTRODUCED INTO UNIT OR PROCESS

Include solid fuels such as coke or coal. Exclude indirect heat exchangers from this section						
For indirect heat exchangers, complete form SFN 8518						
	Hourly Process Weight				Intermittent	
	(Pounds Per Hour)				Operation Only	
				Average Annual	(Average Hours	
Material	Average	Maximum	Minimum	(Specify Units)	Per Week)	
Condensate	7500	7500	0	10,500,000 gallons	24	

SFN 8520 (9-2021) Page 2

SECTION E - PRODUCTS OF UNIT OR PROCESS

Include all, even those not usable because they do not meet specifications						
	Hourly Process Weight				Intermittent	
	(F	(Pounds Per Hour)			Operation Only	
				Average Annual	(Average Hours	
Material	Average	Maximum	Minimum	(Specify Units)	Per Week)	
Condensate	7500	7500	0	11,038,000 gallons	5	

SECTION F - FUELS USED

Coal (Tons/Yr)	% Sulfur	% Ash	Oil (Gal/Yr)	% Sulfur	Grade No.
N/A	N/A	N/A	N/A	N/A	N/A
Natural Gas (Tho	ousand CF/Yr)	LP Gas	(Gal/Yr)	Other (\$	Specify)
N/A		N/A		N/A	

SECTION G - EMISSION POINTS

OLO HOR O					
List each point s	eparately, number	each and locate o	n attached flow cl	hart	
	Stack Height	Stack Diameter	Gas Volume		Gas Velocity
Number	(ft)	(ft at top)	(ACFM)	Exit Temp (°F)	(fps)
1	N/A	N/A	N/A	N/A	N/A

SECTION H - AIR CONTAMINANTS EMITTED

Known or Suspec	<u>ted - Use same id</u>	entification nur	nber as above)
		Amo	ount	
Number	Pollutant	Pounds/Hr	Tons/Yr	Basis of Estimate
1	VOC	4.57	20.00	Representative Sampling
1	HAP	0.24	1.06	Representative Sampling

SECTION I – VOLATILE ORGANIC COMPOUNDS

Are any volatile organic compounds (VOCs) stored on premises? No Yes – List Below				
See 40 CFR 51.100(s) for classes	of compounds covered			
Material Stored	Size Tank (Gallons)	Vapor Control Device		
Condensate	16,800	Flare		

SFN 8520 (9-2021) Page 3

SECTION J - ORGANIC SOLVENTS

OLO HONO		- 4 - 14 1 0			
Are any organic s	solvents used or p	produced? No	(None or less that	n 50 gal/yr) 🔲	Yes – List Below
Туре	P	rincipal Use	Gallons/Yr Cons	sumed Gallo	ns/Yr Produced
- 77					
SECTION K -	AIR POLLUTIO	ON CONTROL E	QUIPMENT	•	
Is any air pollutio If 'Yes' attach for		ent installed on this	unit or process?	■ No □	Yes
II Tes attacimor	111 01 14 0002				_
SECTION I -	MATERIAL ST	ORAGE			
		from this process	contain finely divid	ed material which	n could become
airborne?	No T Yes	•	contain infoly divid	ca material winer	r coala become
Describe storage	methods used:				
		Particle			T
	Type of	Diameter (Avg.	Pile Size		
Storage Piles	Material	or Screen Size)	Average Tons	Pile Wetted	Pile Covered
Describe any fug	itive dust problem	is:			
^ ++	abaata if waa dad	ta avelajo apv		- f f	
Attach additional	sneets it needed	to explain any ans	wers. Ose separat	e lorm for each c	ontaminant

emitting process

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701)328-5188

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTI	ON A -	- GENERA	AL INFO	ORMAT	ION
\circ			<u>, </u>		-

				Facility Name Nighthawk Compressor Station		
	B – TANK DATA		, 5			
	mber (From SFN 8516)					
Capacity	Barrels			Gallons 16,800		
Dimensions	Diameter	Height 20		Length		Width
Shape	■ Cylindrical		pherical		Other –	Specify:
Materials of Construction	(i.e., steel)					
Construction	Riveted	■ V	Velded		Other –	Specify:
Color Tan						
Condition	■ Good	☐ F	air		Poor	
Status	■ New Constru	uction	Iteration		Existing ve Date	Constructed):
Type of Tank	■ Fixed Roof □ Variable Var □ Pressure (lo			☐ External ☐ Internal ☐ Other –	Floating	
Type of Roof	☐ Pan	Double Deck			Othe	r – Specify:
Type of Seal	Metallic Shoe Seal		Mounteent Seal		Vapor	Mounted ent Seal
	Primary Seal Only With Rim Mounted With Shoe Mounte Secondary Seal	Seal Wi	mary Se th Rim M	al Only lounted Seal ner Shield	Prir	mary Seal Only th Rim Mounted Seal th Weather Shield
SECTION C	- TANK CONTENT	S				
	ds, vapors, gases, or m lbs per gal) or A.P.I.	xtures of such	materials	s to be stored ir	n the tan	k.
SECTION D	– VAPOR DISPOS					
Atmosphe			ıre 🗌 E	Enclosed Comb	ustor	Other – Specify:

SFN 8535 (3-2019) Page 2

SECTION E -	VADDD	DDEGGLIDE	DATA
SECTION E	VALOR	FNEGGUNE	DAIA

SECTION E – VAPOR PRESSURE DATA					
psia					
Maximum True Vapo 12.87 psia	or Pressure	Maximun	n Reid Vapor Pressure		
· · · · · · · · · · · · · · · · · · ·					
SECTION F - OP	ERATIONAL DATA	A			
Maximum Filling Rat			Vapor Space Outage		
(barrels per hour or 9 0.78 bbl/hr	gallons per hour)	(See AP-	-42, 7.1-92, Equation 1-15)		
Average Throughput		Tank Tur	novers per Year		
(barrels per day or g 18.7 bbl/day	allons per day)				
SECTION G = SC	LUTION STORAG	 iF			
If material stored is a solution, supply the following information:					
Name of Solvent	, 24pp. / 110		Material Dissolved		
			B 4 B		
Concentration of Ma	terial Dissolved (% by	weight or % by volur	me or lbs/gal)		
SECTION H - All	R CONTAMINANA	TS EMITTED			
	Maximum Pounds		Basis and Calculations for Quantities		
Pollutant*	Per Hour	Tons Per Year	(Attach separate sheet if needed)		
VOC	0.04	0.17	AP-42		
* Include an estimate	e of greenhouse gas e	emissions (CO ₂ e)			
SECTION I – STA	ANDARDS OF PER	REORMANCE			
	☐ 40 CFR 60, Subpart		Subpart Ka 40 CFR 60, Subpart Kb		
_	·				
☐ 40 CFR 60, Subpart OOOO ☐ 40 CFR 60, Subpart OOOOa					
Part 60, Subparts K,			petroleum liquid storage vessels, 40 CFR ed to, where applicable?		

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR FLARES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 59652 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization ONEOK Rockies Midstream, L.L.C.		Facility Name Nighthawk Compressor Station			
	[mgmmamm comp				
SECTION B - FLARE INFOR	RMATION				
Use: Emergency Pr	ocess 🔳 Both	Subject to NS	PS (40 CFR 60.18)	∘ Yes	• No
Emission Point ID	Height Above Gr	ound Level (ft.)	Diameter at Top	(ft.)	
FL-1	50	` ,	~2.5	` ,	
Flame Monitor: Thermocouple	e 🔲 Infrared		Ultraviolet	☐ Acoust	ic
Other:					
Ignition: Automatic	Continuo	ous Burning Pilo	t		
■ Other: Elect	ric spark igniter				
Average Btu/1000 scf Percent H ₂ S		Maximum Hourly Flow Rate to Flare		Flare	
1,350	0.00%		Max of 1.889 MCF per b	lowdown eve	ent
List source ID numbers controlled by this unit, if any:					
TK-1 - TK-3, WTK-1, Compressor blow	vdowns at C-1 - C-2				
		·-	· ·		•

SECTION C - AIR CONTAMINANTS EMITTED

Pollutant	Amount (Tons Per Year)	Basis of Estimate*
NOx	1.45	Stream: AP-42 Table 13.5-1 (2/18) / Pilot: AP-42 Table 1.4-1,-2 (7/98)
СО	4.33	Stream: AP-42 Table 13.5-1 (2/18) / Pilot: AP-42 Table 1.4-1,-2 (7/98)
PM	0.05	Pilot: AP-42 Table 1.4-1, -2 (7/98)
PM ₁₀ (filterable and condensable)	0.05	Pilot: AP-42 Table 1.4-1, -2 (7/98)
PM _{2.5} (filterable and condensable)	0.05	Pilot: AP-42 Table 1.4-1, -2 (7/98)
SO ₂	0.16	Stream: Stoichiometric / Pilot: AP-42 Table 1.4-1,-2 (7/98)
VOC	0.31	Stream: Mass Balance / Pilot: AP-42 1.4-1,-2 (7/98)
GHG (as CO ₂ e)	2,202.71	Stream: 40 CFR 98 and Mass Balance / Pilot: 40 CFR 98
Largest Single HAP	0.01	n-Hexane - Stream: Mass Balance / Pilot AP-42 Table 1.4-1,-2 (7/98)
Total HAPS	0.02	Stream: Mass Balance / Pilot: AP-42 Table 1.4-1,-2 (7/98)

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee are used provide spec sheet.

SFN 59652 (3-2019) Page 2

Will flaring of gas comply with applicable Ambient Air Quality Standards? ■ Yes □ No			
IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION CONTROL RULES AND REGULATIONS?	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.		
■ YES □ NO			

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701)328-5188

Figure 1.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Dunn County, ND

Figure Title: Area Map

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Facility Emissions Summary - Annual

Unit ID	Description	NOx	со	voc	SO ₂	PM	нсно	НАР	CO₂e
		TPY	TPY	TPY	TPY	TPY	TPY	TPY	TPY
C-1	2,750-hp Caterpillar G3608 A-4 Engine	26.55	30.01	15.93	0.05	0.88	2.12	2.64	12,723.43
C - 2	2,2750-hp Caterpillar G3608 A-4 Engine	26.55	30.01	15.93	0.05	0.88	2.12	2.64	12,723.43
FL-1	Process/VOC Flare	1.45	4.33	0.31	0.16	0.05	<0.01	0.02	2,202.71
TK-1	400-bbl Condensate Tank			10.16				0.54	22.80
TK-2	400-bbl Condensate Tank			1.37				0.07	0.00
TK-3	400-bbl Condensate Tank	-		1.37			-	0.07	0.00
WTK-1	400-bbl Produced Water Tank			0.04				<0.01	0.10
TL-1	Condensate Truck Loading			20.00				1.06	0.04
MTK-1	400-bbl Methanol Tank		-	0.17		-		0.17	
FUG	Fugitive Emissions			11.71				1.18	185.26
BD	Miscellaneous Venting and Blowdowns to Atmosphere			5.80				0.11	144.66
	Total =	54.56	64.34	82.79	0.27	1.81	4.25	8.49	28,002.44

Notes:

¹⁾ Tank emissions are routed to the Process/VOC Flare which is a single stack. Unburned VOC and HAP reported at the tanks.

¹⁾ Miscellaneous venting and blowdowns to atmosphere include, but are not limited to, miscellaneous planned and unplanned venting to atmosphere from pressure relief valves, startup, shut-down, maintenance, compressor blowdowns, pigging actions, and/or pneumatic controllers.

Docusign Envelope ID: B2CF073A-6C54-4DFB-8DBC-9C570DCFB5E9

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Facility Emissions Summary - Hourly

Unit ID	Description	NOX	8	voc	SO ₂	PM	нсно	HAP	CO ₂ e
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
C - 1	2,750-hp Caterpillar G3608 A-4 Engine	90'9	98'9	3.64	0.01	0.20	0.49	09'0	2,904.89
C - 2	2,2750-hp Caterpillar G3608 A-4 Engine	90'9	6.85	3.64	0.01	0.20	0.49	09'0	2,904.89
FL-1	Process/VOC Flare	0.49	1.72	0.94	0.04	0.01	<0.01	0.02	804.48
TK-1	400-bbl Condensate Tank	ı		2.32	ŀ	-	ŀ	0.12	5.20
TK-2	400-bbl Condensate Tank	-		0.31	-		-	0.02	0.00
TK-3	400-bbl Condensate Tank	-		0.31			-	0.02	00.00
WTK-1	400-bbl Produced Water Tank			0.01			-	<0.01	0.02
TL-1	Condensate Truck Loading			4.57			-	0.24	0.01
MTK-1	400-bbl Methanol Tank			0.04	-	-	-	0.04	-
FUG	Fugitive Emissions			2.67		-	-	0.27	42.30
BD	Miscellaneous Venting and Blowdowns to Atmosphere			-		-	-	-	-
	Total =	12.62	15.43	18.45	0.06	0.41	0.97	1.93	6,661.80

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Facility Analyses

			Stre	Stream 1			Stre	Stream 2			Stre	Stream 3	
	Mologia		Inlet	Inlet Gas			Conde	Condensate			Flash	Flash Gas	
Component	Weight	Wole %	Equiv. Wt. Basis	Weight %	HC Weight	Wole %	Equiv. Wt. Basis	Weight %	HC Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight
Hydrogen Sulfide	34.081	%00000	00.00	%00'0		%0000 ⁰	00.0	%00'0		%00000	00.00	%00.0	ı
Carbon Dioxide	44.010	0.7680%	0.34	1.31%	ı	0.0087%	0.00	0.00%	ı	0.5400%	0.24	0.57%	ı
Nitrogen	28.013	2.4711%	69.0	2.67%	-	%5000'0	00'0	%00'0	-	0.3350%	60.0	0.22%	1
Helium	4.003	%0000'0	00.00	%00.0	ı	0.0000%	00.0	0.00%	ı	%0000.0	00.00	%00'0	ı
Oxygen	31,999	%00000	00.00	%00'0	-	%00000	00'0	%00'0	-	%00000	00.00	%00'0	1
Methane	16.043	%696E 8 <u>9</u>	9.37	36.18%	37.67%	%8580.0	0.01	0.02%	0.02%	16.1000%	2.58	6.16%	6.21%
Ethane	30.069	20.2914%	6.10	73.56%	24 54%	1.0600%	0.32	%98.0	0.36%	27.3000%	8.21	19.58%	19.74%
Propane	44.096	10.7128%	4.72	18.24%	19.00%	%0066 €	1.76	1.98%	1.98%	27.5000%	12.13	28.93%	29.16%
i-Butane	58 122	1.1679%	0.68	7.62%	2.73%	1.4700%	98'0	%96.0	%96.0	3.6100%	2.10	5.01%	2.05%
n-Butane	58 122	3.6719%	2.13	8.24%	8.58%	%0096'2	4.63	5 19%	5.19%	12.8000%	7.44	17.75%	17.89%
i-Pentane	72.149	0.6731%	0.49	1.88%	1 95%	2.0900%	3.67	4 12%	4 12%	3 1400%	2.27	5.40%	5.45%
n-Pentane	72.149	1.0288%	0.74	2.87%	2.99%	11.6000%	28.37	6.40%	9.40%	5 1400%	3.71	8.85%	8.92%
n-Hexane	86 175	0.1565%	0.13	0.52%	0.54%	21 0000%	18.10	20.32%	20.32%	2.4000%	2.07	4.93%	4 97%
Other Hexanes	86.175	0.4351%	0.37	1.45%	1.51%	%00000	00'0	%00.0	%00.0	%00000	00.00	%00'0	%00.0
Heptanes	100.202	0.0820%	0.08	0.32%	0.33%	%0008 23	23.95	26.88%	26.89%	0 7820%	0.78	1.87%	1.88%
Benzene	78 114	0.0168%	0.01	0.05%	0.05%	%0/96.0	92'0	0.85%	0.85%	0 1140%	60.0	0.21%	0.21%
Toluene	92.141	0.0130%	0.01	0.05%	0.05%	1.5200%	1.40	1.57%	1.57%	0.0460%	0.04	0.10%	0.10%
Ethylbenzene	106.167	%6000.0	0.00	%00'0	0.00%	0.2740%	0.29	0.33%	0.33%	0.0024%	0.00	0.01%	0.01%
Xylenes	106 167	0.0038%	00.00	0.02%	0.02%	0.8820%	0.94	1 05%	1 05%	0 0029%	0.01	0.01%	0.02%
Octanes	114.229	0.0000%	0.00	%00.0	0.00%	14.6000%	16.68	18.72%	18.72%	0.1330%	0.15	0.36%	0.37%
2,2,4-Trimethylpentane	114.231	0.0084%	0.01	% * 0.0	0.04%	%00000	00'0	%00.0	%00.0	%00000	00.00	%00'0	%00.0
Nonanes	128 255	%00000	00.00	%00.0	0.00%	4.2800%	5.49	6.16%	6.16%	0.0109%	0.01	0.03%	0.03%
Decanes	142.282	%000000	00.00	%00'0	0.00%	1.3120%	1.87	2.10%	2.10%	0.0010%	00.00	%00.0	0.00%
	Totals =	99.8984%	25.90	100.00%	100.00%	100 0000%	80'68	100.00%	100.00%	88 9802%	41.92	100.00%	100.00%
		Total HC =	24.87	Total VOC =	37 79%	Total HC =	80 68	Total VOC =	89 63%	Total HC =	41.59	Total VOC =	74 05%
				Total HAP =	0.70%			Total HAP =	24.11%			Total HAP =	5.31%

Notes:

¹⁾ Representative inlet gas analysis with C6+ estimated per GLYCalc. Condensate and flash gas compositions calculated with ProMax process simulation using representative analysis. (Elm Tree CS, located 6 miles away)

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Estimated Extended Gas Analysis

Component	Produ	uction
Component	GRI Fraction	Estimated Mole %
Other Hexanes	0.5319	0.4351
n-Hexane	0.1913	0.1565
Heptane	0.1002	0.0820
2,2,4-Trimethylpentane	0.0103	0.0084
Octanes+	0.1241	0.1015
Benzene	0.0205	0.0168
Toluene	0.0159	0.0130
Ethylbenzene	0.0011	0.0009
Xylenes	0.0046	0.0038
	Total=	0.8180

C6+ Value From Gas Analysis = 0.8181 mole %

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Engine Information and Manufacturer Emission Factors

Equipme	nt Information	
	C-1	C-2
Make	Caterpillar	Caterpillar
Model	G3608 ADEM4	G3608 ADEM4
Design Rating (hp)	2,750	2,750
Fuel Consumption (Btu/hp-hr)	7,327	7,327
Fuel Consumption (scfh)	19,754	19,754
Fuel Consumption (mmBtu/hr)	20.15	20.15
Fuel Consumption (scf/yr)	173,046,500	173,046,500
Fuel Heating Value (Btu/scf)	1,020	1,020
Design Class	4S-LB	4S-LB
Controls	Oxidation Catalyst	Oxidation Catalyst
Operating Hours	8,760	8,760
Stack Height (ft)	30.0	30.0
Stack Diameter (ft)	4.5	4.5
Exhaust Temperature (°F)	756	756
Exhaust Flow (acfm)	17,327	17,327
Exhaust Flow (scfh)	451,414	451,414
Exit Velocity (ft/s)	18.16	18.16

Uncontrolled	Emission Factors	
	C-1	C-2
NOx (g/hp-hr)	1.00	1.00
CO (g/hp-hr)	2.98	2.98
VOC (g/hp-hr)	1.26	1.26
Formaldehyde (g/hp-hr)	0.18	0.18
CO ₂ (g/hp-hr)	474.00	474.00

Contro	ol Efficiency	
	C-1	C-2
NOx	0.00%	0.00%
СО	75.00%	75.00%
VOC	52.00%	52.00%
Formaldehyde	50.00%	50.00%

Post-Control	Emission Factors	
	C-1	C-2
NOx (g/hp-hr)	1.00	1.00
CO (g/hp-hr)	1.13	1.13
VOC (g/hp-hr)	0.60	0.60
Formaldehyde (g/hp-hr)	0.08	0.08
CO ₂ (g/hp-hr)	478.74	478.74

Notes:

¹⁾ Nox emission factors based on JJJJ limitations. CO, VOC, and formaldehyde emission factors based on manufacturer specifications.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Engine AP-42/EPA Emission Factors

Emission Factors	
	4S-LB
SO ₂ (lb/mmBtu)	5.88E-04
PM _{10/2.5} (lb/mmBtu)	7.71E-05
PM _{COND} (lb/mmBtu)	9.91E-03
PM _{TOT} (lb/mmBtu)	9.99E-03
Acetaldehyde (lb/mmBtu)	8.36E-03
Acrolein (lb/mmBtu)	5.14E-03
Benzene (lb/mmBtu)	4.40E-04
Ethylbenzene (lb/mmBtu)	3.97E-05
Methanol (lb/mmBtu)	2.50E-03
Toluene (lb/mmBtu)	4.08E-04
Xylenes (lb/mmBtu)	1.84E-04
Other HAP (lb/mmBtu)	2.32E-03
Carbon Dioxide (CO ₂) (kg/mmBtu)	5.31E+01
Methane (CH₄) (kg/mmBtu)	1.00E-03
Nitrous Oxide (N₂O) (kg/mmBtu)	1.00E-04

Control Efficiency	
	4S-LB
HAP	70.00%

Post-Control Emission F	actors
	4S-LB
Acetaldehyde (lb/mmBtu)	2.51E-03
Acrolein (lb/mmBtu)	1.54E-03
Benzene (lb/mmBtu)	1.32E-04
Ethylbenzene (lb/mmBtu)	1.19E-05
Methanol (lb/mmBtu)	7.50E-04
Toluene (lb/mmBtu)	1.22E-04
Xylenes (lb/mmBtu)	5.52E-05
Other HAP (lb/mmBtu)	6.97E-04

Notes:

¹⁾ Criteria pollutant and hazardous air pollutant emission factors are from AP-42 Table 3.2-2 (7/00). Greenhouse gas emission factors are from 40 CFR Tables C-1 and C-2.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Engine Emissions Calculations

Unit ID: C-1

Pollutant		Emission Factor		Cap	Capacity		Conversion	ion		Hourly Emissions	ssions	ő	Operating Hours	Sī.	Conve	Conversion		Annual Emissions	issions
XON	1.00E+00	g/hp-hr	×	2,750	hp	×	0.00220462	lb/gr	ш	90'9	lb/hr	×	8,760	×	0.0005	ton/lb	"	26.55	ТРҮ
00	1.13E+00	g/hp-hr	×	2,750	ф	×	0.00220462	lb/gr	П	6.85	lb/hr	×	8,760	×	0.0005	ton/lb	П	30.01	ТРҮ
201	6.00E-01	g/hp-hr	×	2,750	hp	×	0.00220462	lb/gr	п	3.64	lb/hr	×	8,760	×	0.0005	ton/lb	П	15.93	TPY
^z os	5.88E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	ı	•	Ш	0.01	b/hr	×	8,760	×	0.0005	ton/lb	=	0.05	ТРҮ
PM _{10/2.5}	7.71E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	ı		п	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	"	0.01	ТРҮ
PMcond	9.91E-03	lb/mmBtu	×	20.15	mmBtu/hr	×			"	0.20	lb/hr	×	8,760	×	0.0005	ton/lb	"	0.87	TPY
PM _{TOT}	9.99E-03	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	ш	0.20	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.88	ТРҮ
Acetaldehyde	2.51E-03	lb/mmBtu	×	20.15	mmBtu/hr	×	-	-	п	90'0	lb/hr	×	8,760	×	0.0005	ton/lb	п	0.22	TPY
Acrolein	1.54E-03	lb/mmBtu	×	20.15	mmBtu/hr	×			"	0.03	lb/hr	×	8,760	×	0.0005	ton/lb	ıı	0.14	ТРҮ
Benzene	1.32E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	•	-	п	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	11	0.01	ТРҮ
Ethylbenzene	1.19E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	п	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	<0.01	TPY
Formaldehyde	8.00E-02	g/hp-hr	×	2,750	ф	×	0.00220462	lb/gr	"	0.49	lb/hr	×	8,760	×	0.0005	ton/lb	ıı	2.12	ТРҮ
Methanol		7.50E-04 lb/mmBtu	×	20.15	mmBtu/hr	×	-	1	п	0.02	b/hr	×	8,760	×	0.0005	ton/lb	=	0.07	ТРҮ
Toluene	1.22E-04	b/mmBtu	×	20.15	mmBtu/hr	×	1	-	П	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	П	0.01	TPY
Xylenes	5.52E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	П	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	<0.01	ТРҮ
Other HAP	6.97E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	н	0.01	b/hr	×	8,760	×	0.0005	ton/lb	П	90'0	тРҮ
co	4.79E+02	g/hp-hr	×	2,750.00	hp	×	0.00220462	lb/gr	Ш	2,902.46	b/hr	×	8,760	×	0.0005	ton/lb	П	12,712.77	ТРҮ
CH₄	1.00E-03	kg/mmBtu	×	20.15	mmBtu/hr	×	2.20462	b/kg	п	0.04	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.19	ТРҮ
O ^z N	1.00E-04	1.00E-04 kg/mmBtu	×	20.15	mmBtu/hr	×	2.20462	lb/kg	п	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	=	0.02	TPY
									١										l

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Engine Emissions Calculations

Unit ID: C-2

Pollutant		Emission Factor		Cap	Capacity		Conversion	ion		Hourly Emissions	issions	å	Operating Hours	 φ	Conversion	sion		Annual Emissions	issions
XON	1.00E+00	g/hp-hr	×	2,750	ф	×	0.00220462	lb/gr	п	90'9	lb/hr	×	8,760	×	0.0005	ton/lb	=	26.55	ТРҮ
00	1.13E+00	g/hp-hr	×	2,750	ф	×	0.00220462	lb/gr	=	6.85	lb/hr	×	8,760	×	0.0005	ton/lb	=	30.01	ТРҮ
NOC	6.00E-01	g/hp-hr	×	2,750	dų	×	0.00220462	lb/gr	11	3.64	lb/hr	×	8,760	×	0.0005	ton/lb	11	15.93	ТРҮ
SO ₂	5.88E-04	lb/mmBtu	×	20.15	mmBtu/hr	×			=	0.01	lb/hr	×	8,760	×	0.0005	ton/lb	ıı	0.05	ТРҮ
PM _{10/2.5}	7.71E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	-	-	=	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	=	0.01	ТРҮ
PMCOND	9.91E-03	lb/mmBtu	×	20.15	mmBtu/hr	×		-	=	0.20	lb/hr	×	8,760	×	0.0005	ton/lb	Ш	0.87	ТРҮ
PM _{TOT}	9.99E-03	lb/mmBtu	×	20.15	mmBtu/hr	×		-	=	0.20	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.88	ТРҮ
Acetaldehyde	2.51E-03	lb/mmBtu	×	20.15	mmBtu/hr	×	-	-	=	0.05	lb/hr	×	8,760	×	0.0005	ton/lb	=	0.22	ТРҮ
Acrolein	1.54E-03	lb/mmBtu	×	20.15	mmBtu/hr	×			"	0.03	lb/hr	×	8,760	×	0.0005	ton/lb	11	0.14	ТРҮ
Benzene	1.32E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	•	-	=	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	11	0.01	ТРҮ
Ethylbenzene	1.19E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	•	-	=	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	=	<0.01	ТРҮ
Formaldehyde	8.00E-02	g/hp-hr	×	2,750	hp	×	0.00220462	lb/gr	=	0.49	lb/hr	×	8,760	×	0.0005	ton/lb	П	2.12	ТРҮ
Methanol		7.50E-04 lb/mmBtu	×	20.15	mmBtu/hr	×	-	-	=	0.02	lb/hr	×	8,760	×	0.0005	ton/lb	п	20.0	ТРҮ
Toluene	1.22E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	н	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.01	ТРҮ
Xylenes	5.52E-05	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	=	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	=	<0.01	ТРҮ
Other HAP	6.97E-04	lb/mmBtu	×	20.15	mmBtu/hr	×	1	-	=	0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	90'0	трү
co	4.79E+02	g/hp-hr	×	2,750.00	hp	×	0.00220462	lb/gr	П	2,902.46	lb/hr	×	8,760	×	0.0005	ton/lb	П	12,712.77	ТРҮ
CH₄	1.00E-03	kg/mmBtu	×	20.15	mmBtu/hr	×	2.20462	b/kg	=	0.04	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.19	ТРҮ
N ₂ O	1 00E-04	1.00E-04 kg/mmBtu	×	20.15	mmBtu/hr	×	2.20462	b/kg	=	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	п	0.02	ТРҮ

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Flare Information and Emission Factors

	Equipment Information	
	FL-1	FL-2
Description	Process Flare	Process Flare
Stream Contents	Miscellanous Blowdowns	VOC Storage Tanks
VOC to Flare (lb/hr)	46.86	97.81
Stream Heat Content (Btu/scf)	1,350	2,187
Stream Net Btu Value (Btu/hr)	2,550,891	2,633,922
Operating Hours	600	8,760
Control Efficiency	98%	98%
Pilot Stream Heat Content (Btu/scf)	1,026	
Pilot Gas Flow Rate (scfh)	1,400.00	
Pilot Gas Capacity (mmBtu/hr)	1.436	
Pilot Operating Hours	8,760	

	AP-42/EPA Em	ission Factors	
	Flare Stream		Pilot Gas
NOx (lb/mmBtu)	0.068	NOx (lb/mmscf)	100.0
CO (lb/mmBtu)	0.31	CO (lb/mmscf)	84.0
VOC	Mass Balance	VOC (lb/mmscf)	5.5
SO ₂	Stoichiometric	SO ₂ (lb/mmscf)	0.6
PM _{10/2.5}	-	PM _{10/2.5} (lb/mmscf)	1.9
PM _{COND}	-	PM _{COND} (lb/mmscf)	5.7
PM _{TOT}	-	PM _{TOT} (lb/mmscf)	7.6
Formaldehyde	-	Formaldehyde (lb/mmscf)	7.50E-02
n-Hexane	Mass Balance	n-Hexane (lb/mmscf)	1.80E+00
Benzene	Mass Balance	Benzene (lb/mmscf)	2.10E-03
Toluene	Mass Balance	Toluene (lb/mmscf)	3.40E-03
Ethylbenzene	Mass Balance	Ethylbenzene	
Xylenes	Mass Balance	Xylenes	
Other HAP	Mass Balance	Other HAP (lb/mmscf)	1.90E-03
Carbon Dioxide (CO ₂) (kg/mmBtu)	53.06/Mass Balance	Carbon Dioxide (CO ₂) (kg/mmBtu)	53.06
Methane (CH₄) (kg/mmBtu)	0.001/Mass Balance	Methane (CH ₄) (kg/mmBtu)	1.00E-03
Nitrous Oxide (N₂O) (kg/mmBtu)	1.00E-04	Nitrous Oxide (N ₂ O) (kg/mmBtu)	1.00E-04

Notes:

1) NOx and CO emission factors (lb/mmBtu), flare stream: AP-42, Table 13.5-1 and 13.5-2 (2/2018). Pilot criteria and HAP emission factors (lb/mmscf): AP-42, Table 1.4-1, -2 (7/98). GHG emission factors (kg/mmBtu): 40 CFR 98.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Flare Emissions Calculations

Unit ID: FL-1

Stream 1 Emissions

Pollutant		Emission Factor		Capacity	icity		Conversion	ion		Hourly Emissions	ssions	Opera	Operating Hours	s	Conversion	sion		Annua Emissions	issions
NOX	6.80E-02	b/mmBtu	×	2,55E+00	mmBtu/hr	×				0,17	b/hr	×	009	×	90000	ton/lb		90'0	тРү
00	3.10E-01	b/mmBtu	×	2,55E+00	mmBtu/hr	×			,	62'0	b/hr	×	009	×	90000	ton/lb		0.24	ТРҮ
200										0.94	b/hr	×	009	×	90000	d/not	-	0.28	ТРҮ
°OS										00'0	b/hr	×	009	×	90000	ton/lb		00'0	тРҮ
n-Hexane									,	0.01	b/hr	×	009	×	90000	ton/lb	п	<0.01	ТРҮ
Benzene										<0.01	b/hr	×	009	×	90000	ton/lb		<0.01	ТРҮ
Toluene										<0.01	b/hr	×	009	×	90000	ton/lb		<0.01	ΤΡΥ
Ethybenzene			١.							<0.01	b/hr	×	009	×	0,0005	ton/lb		<0.01	ТРҮ
Xylenes									,	<0.01	b/hr	×	009	×	90000	ton/lb		<0.01	ТРҮ
Other HAP										<0.01	b/hr	×	009	×	90000	ton/b		<0.01	ТРҮ
c02	5,31E+01	kg/mmBtu	×	2,55E+00	mmBtu/hr	×	2,20462	b/kg		298,40	b/hr	×	009	×	90000	ton/b		89.52	тРҮ
CO			١,						,	1.69	b/hr	×	009	×	0.0005	ton/lb	п	0.51	ТРҮ
°но	1,00E-03	kg/mmBtu	×	2,55E+00 mmBtu/hr	mmBtu/hr	×	2,20462	b/kg	,	10.0	b/hr	×	009	×	90000	ton/lb		<0.01	ТРҮ
"HO										0.93	b/hr	×	009	×	90000	ton/b		0.28	TPY
N ₂ O	N ₂ O 1.00E-04 kg/mmBtu	kg/mmBtu	×	2.55E+00 mmBtu/hr	mmBtwhr	×	2.20462	b/kg		<0.01	b/hr	×	009	×	0.0005	ton/b		<0.01	тРү

Stream 2 Emissions																			
Pollutant		Emission Factor		Capacity	icity		Conversion	sion		Hourly Emissions	issions	Oper	Operating Hours	ايا	Conversion	.sion		Annual Emissions	ssions
NOx	6.80E-02	o/mmBtu	×	2,63E+00 mmBtu/hr	mmBtu/hr	×			=	0,18	b/hr	×	8,760	×	0.0005	d/not		82'0	ТРУ
00	3.10E-01	o/mmBtu	×	2.63E+00 mmBtu/hr	mmBtu/hr	×			п	0.82	b/hr	×	8,760	×	0,0005	ton/Ib		3,58	ТРҮ
so ₂										0.04	b/hr	×	8,760	×	0,0005	ton/lb	п	91.0	ТРҮ
n-Hexane										00'0	b/hr	×	8,760	×	0,0005	ton/b		00'0	ΤΡΥ
Benzene						١.				00'0	b/hr	×	8,760	×	0.0005	ton/lb		00'0	ΤΡΥ
Toluene									п	00'0	b/hr	×	8,760	×	0,0005	ton/Ib	п	00'0	ТРҮ
Ethybenzene									=	00'0	b/hr	×	8,760	×	0,0005	ton/b	=	00'0	ΤΡΥ
Xylenes										00'0	b/hr	×	8,760	×	0,0005	ton/b	-	00'0	ТРУ
Other HAP										00'0	b/hr	×	8,760	×	0,0005	ton/Ib		00'0	ТРҮ
CO	5,31E+01	kg/mmBtu	×	2,63E+00 mmBtu/hr	mmBtu/hr	×	2,20462	b/kg	=	308.11	b/hr	×	8,760	×	0,0005	ton/lb		1,349.52	ТРҮ
co ²										00'0	b/hr	×	8,760	×	0,0005	ton/b	-	00.0	ΤΡΥ
*HD	1.00E-03	kg/mmBtu	×	2.63E+00 mmBtu/hr	mmBtu/hr	×	2,20462	b/kg		0.01	b/hr	×	8,760	×	0,0005	ton/b	=	0.03	ТРҮ
ďЮ			١,			.				0,16	b/hr	×	8,760	×	0,0005	ton/lb		0.72	ТРҮ
N ₂ O	1.00E-04	kg/mmBtu	×	2,63E+00	2,63E+00 mmBtu/hr	×	2,20462	b/kg	=	<0.01	b/hr	×	8,760	×	0,0005	ton/b	=	<0.01	ТРҮ

Pollutant		Emission Factor		Capacity	acity		Conversion	ion		Hourly Emissions	issions	Oper	Operating Hours	,,	Conversion	ion		Annua Emissions	ssions
NOX	1,00E+02	p/mmscf	×	1 40E 03	mmscf/hr	×				0.14	b/hr	×	8,760	×	0.0005	ton/lb		19.0	ΤPΥ
8	8,40E+01	o/mmscf	×	1.40E-03	mmscf/hr	×			,	0,12	b/hr	×	8,760	×	0.0005	ton/lb		0,52	ΤP
NOC	5,50E+00	p/mmscf	×	1.40E.03	mmscf/hr	×				0.01	b/hr	×	8,760	×	0,0005	ton/lb		0.03	Ŧ
SO ₂	6.00E-01	p/mmscf	×	1 40E 03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	0,0005	ton/lb		<0.01	ΤPΥ
PM102.5	1,90E+00	p/mmscf	×	1.40E.03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	90000	ton/lb	=	0.01	ΤPΥ
PMconp	5,70E+00	p/mmscf	×	1.40E.03	mmscf/hr	×			,,	0.01	b/hr	×	8,760	×	0,0005	ton/lb		0.03	Ā
PM _{TOT}	7,60E+00	p/mmscf	×	1 40E 03	mmscf/hr	×				0.01	b/hr	×	8,760	×	0,0005	ton/lb		90.0	ΤP
Formaldehyde	7 50E-02	p/mmscf	×	1.40E.03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	90000	ton/lb		<0.01	тРҮ
n-Hexane	1,80E+00	b/mmscf	×	1.40E-03	mmscf/hr	×			,	<0.01	b/hr	×	8,760	×	0,0005	ton/lb		10.0	Ŧ
Benzene	2.10E-03	p/mmscf	×	1.40E.03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	0,0005	ton/lb		10,0>	Ĭ
Toluene	3.40E-03	p/mmscf	×	1 40E 03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	0,0005	ton/lb		<0.01	ΤPΥ
Other HAP	1.90E-03	p/mmscf	×	1.40E.03	mmscf/hr	×				<0.01	b/hr	×	8,760	×	0,0005	ton/lb	=	<0.01	тРҮ
CO	5,31E+01	kg/mmBtu	×	1,44E+00	mmBtu/hr	×	2,20462	D/kg		168.03	b/hr	×	8,760	×	0,0005	ton/lb		735.95	ΤP
CH	1.00E-03	kg/mmBtu	×	1,44E+00	mmBtu/hr	×	2,20462	b/kg		<0.01	b/hr	×	8,760	×	0,0005	ton/lb		10.0	ΤPΥ
N ₂ O	1 00E 04	N ₂ O 1.00E-04 kg/mmBtu	×	1.44E+00	1.44E+00 mmBtu/hr	×	2.20462	b/kg		<0.01	b/hr	×	8,760	×	90000	ton/lb		<0.01	ТРҮ
												I					1		

minissions are routed to the VOC flare. Unburned VOC and HAP reported at the tanks. Plot and blowdown VOC and HAP reported at the VOC flare.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Flare Emissions Calculations - Flare Stream Analysis

7 Unit ID:

		Stream 1	am 1							
	100 CM	Miscellaneou Blowd	Miscellaneous Vents and Blowdowns		Total Stre	Total Streams Burned in Flare	d in Flare		Net Heating	Net Btu Rate
Component	Weight	1.89E+03	ujos	Uncon	Uncontrolled	pjos	Conti	Controlled	Value	
		Wole %	lb/hr	lb/hr	ТРҮ		lb/hr	ТРҮ	Btu/scf	Btu/hr
Water	18.0153	0.000%	00.00	00.0	00.00	0	00'0	00.00	00.0	0
Hydrogen Sulfide	34.081	%000'0	00.00	00.00	00.00	0	00'0	00.0	586.80	0
Carbon Dioxide	44.010	0.768%	1.69	1.69	0.51	349	1.69	0.51	00'0	0
Nitrogen	28.013	2.471%	3.45	3.45	1.04	1,122	3.45	1.04	00.00	0
Helium	4.003	%000.0	0.00	00:00	00.00	0	00'0	00.0	00'0	0
Oxygen	31.999	%000'0	00.0	0.00	00.0	0	00'0	00'0	00'0	0
Methane	16.043	28.397%	46.72	46.72	14.02	26,517	66.0	0.28	909.40	1,004,768
Ethane	690'08	20.291%	30.43	30.43	9.13	9,214	19'0	0.18	1,618.70	621,440
Propane	44.096	10.713%	23.56	23.56	7.07	4,864	0.47	0.14	2,314.90	469,198
i-Butane	58.122	1.168%	3.39	3.39	1.02	230	20'0	0.02	3,000.40	66,299
n-Butane	58.122	3.672%	10.64	10.64	3.19	1,667	0.21	90'0	3,010.80	209,167
i-Pentane	72.149	0.673%	2.42	2.42	0.73	908	90'0	0.01	3,699.00	47,107
n-Pentane	72.149	1.029%	3.70	3.70	1.11	467	20.0	0.02	3,706.90	72,154
n-Hexane	86.175	0.157%	29'0	29.0	0.20	71	0.01	00'0	4,403.80	13,040
Other Hexanes	86.175	0.435%	1.87	1.87	0.56	198	0.04	0.01	4,403.80	36,252
Heptanes	100.202	0.082%	0.41	0.41	0.12	37	0.01	00'0	5,100.00	7,912
Benzene		0.017%	20.0	0.07	0.02	8	00'0	00'0	3,590.90	1,141
Toluene		0.013%	90.0	0.06	0.02	9	0.00	0.00	4,273.60	1,051
Ethylbenzene		0.001%	00.0	00.00	00.0	0	00'0	00'0	4,970.50	85
Xylenes	106.167	0.004%	0.02	0.02	0.01	2	0.00	0.00	4,957.10	356
Octanes	114.229	%000'0	00'0	00.0	00.00	0	00'0	00'0	5,796.00	0
2,2,4-Trimethylpentane		%800'0	0.05	0.05	0.01	4	00'0	00'0	5,778.80	918
Nonanes	128.255	%000'0	00'0	00.0	0.00	0	00'0	00'0	6,493.20	0
Decanes	142.282	%000'0	00.0	0.00	00.00	0	00'0	00'0	7,189.60	0
	Totals =	99.8984%	129.14	129.14	38.74	45,362		-	-	2,550,891
	Total VOC =	17.971%	46.86	46.86	14.06	-	0.94	0.28	0.110/1400H	
			Total HAP =	0.87	0.26		0.02	0.01	(Btil/scf)	1,350
			Total H ₂ S=	00'0	00'0	-	00'0	00'0	(100,100,1)	
					MW of Stream =	25.92				

Notes:

1) Representative inlet gas analysis with C6+ estimated per GLYCalc. Estimated 600 vents or blowdowns at 1.889 MCF and one hour each.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Flare Emissions Calculations - Flare Stream Analysis

F.3 Unit ID:

		1	-							
		Jane T	Suedin 2		Total Stre	Total Streams Burned in Flare	d in Flare		:	
	Molecular	I ank En	IISSIOIIS						Net Heating	Net Btu Rate
Component	Weight	1.21E+03	scfh	Uncon	Uncontrolled	scfd	Controlled	olled	value	
		Wole %	lb/hr	lb/hr	ТРҮ		lb/hr	ТРҮ	Btu/scf	Btu/hr
Water	18.0153	%000.0	00.00	00.00	00.00	0	0.00	00.00	00.0	0
Hydrogen Sulfide	34.081	%000'0	00.00	00.00	00'0	0	00.00	0.00	586.80	0
Carbon Dioxide	44.010	0.540%	0.75	0.75	0.23	156	0.75	0.23	00.00	0
Nitrogen	28.013	0.335%	0.30	0.30	60'0	26	0:30	60.0	00.00	0
Helium	4.003	%000'0	00.00	00.00	00'0	0	00.00	00.00	00.00	0
Oxygen	31.999	%000'0	00.00	00.00	00'0	0	00.00	00.00	00.00	0
Methane	16.043	16.100%	8.20	8.20	2.46	4,656	0.16	0.05	909.40	176,428
Ethane	30.069	27.300%	26.07	26.07	7.82	7,895	0.52	0.16	1,618.70	532,496
Propane	44.096	27.500%	38.51	38.51	11.55	7,953	0.77	0.23	2,314.90	767,100
i-Butane	58.122	3.610%	99'9	99.9	2.00	1,044	0.13	0.04	3,000.40	130,519
n-Butane	58.122	12.800%	23.63	23.63	7.09	3,702	0.47	0.14	3,010.80	464,386
i-Pentane	72.149	3 140%	7.20	7.20	2.16	806	0.14	0.04	3,699.00	139,959
n-Pentane	72.149	5 140%	11.78	11.78	3.53	1,486	0.24	20.0	3,706.90	229,594
n-Hexane	86.175	2.400%	6.57	6.57	1.97	694	0.13	0.04	4,403.80	127,358
Other Hexanes	86.175	%000.0	00.00	00.00	00.00	0	00.00	00:00	4,403.80	0
Heptanes	100.202	0.782%	2.49	2.49	0.75	226	0.05	0.01	5,100.00	48,058
Benzene	78.114	0.114%	0.28	0.28	0.08	33	0.01	00'0	3,590.90	4,933
Toluene	92.141	0.046%	0.13	0.13	0.04	13	00.00	00.0	4,273.60	2,369
Ethylbenzene	106 167	0.002%	0.01	0.01	0.00	1	00.00	00.0	4,970.50	143
Xylenes		0.006%	0.02	0.02	0.01	2	0.00	00.0	4,957.10	354
Octanes	114 229	0.133%	0.48	0.48	0.14	38	0.01	00'0	2,796.00	9,289
2,2,4-Trimethylpentane		%000'0	00'0	0.00	0.00	0	00.00	00.0	5,778.80	0
Nonanes	128 255	0.011%	0.04	0.04	0.01	3	0.00	00.0	6,493.20	853
Decanes	142.282	0.001%	00.00	0.00	00.00	0	0.00	0.00	7,189.60	84
	Totals =	100.0%	133.14	133.14	39.94	28,908	:			2,633,922
	Total VOC =	25.685%	97.81	97.81	29.34	-	00'0	0.59	Out Walue	
			Total HAP =	7.01	2.10		0.14	0.04	near value (Btii/scf)	2,187
			Total H ₂ S=	0.00	00'0		00'0	00.0	(inema)	
					MW of Stream =	41.94				

Notes:

1) Representative inlet gas analysis with C6+ estimated per GLYCalc. Estimated 600 vents or blowdowns at 1.889 MCF and one hour each.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Tank Information

E	quipment Information		
	TK-1	TK-2, -3	WTK-1
Contents ¹	Condensate	Condensate	Produced Water
Number of Tanks	1	2	1
Capacity (bbl)	400	400	400
Capacity (gal)	16,800	16,800	16,800
Total Throughput (bbl/yr)	250,000	250,000	107,178
Total Throughput (gal/yr)	10,500,000	10,500,000	4,501,476
Per Tank Throughput (bbl/yr)	250,000	250,000	107,178
Per Tank Throughput (gal/yr)	10,500,000	5,250,000	4,501,476
Emission Calculation Method	Process Simulation	Process Simulation	Process Simulation
VOC Tank Working Emission Factor (lb VOC/bbl) ²	0.352	0.352	0.004
VOC Tank Breathing Losses (lb/yr) ²	3,823.00	3,823.00	38.23
VOC Tank Flashing Emission Factor (lb VOC/bbl) ²	2.36	N/A	0.024
CO ₂ Tank Flashing Emission Factor (lb CO ₂ /bbl) ²	0.022	N/A	0.000
CH ₄ Tank Flashing Emission Factor (lb CH ₄ /bbl) ²	0.244	N/A	0.002
Control Type	VOC Flare	VOC Flare	VOC Flare
Capture Efficiency ³	99%	99%	99%
Control Efficiency ³	98%	98%	98%

- 1) Produced water tanks are assumed to contain 99% produced water and 1% condensate. Therefore, produced water emissions are assumed to be 1% of those calculated for condensate.
- 2) Working, breathing, and flashing calculated with ProMax process simulation. See attached reports and following tables.
- 3) Tank emissions are routed to the FL-1 with 99% capture efficiency and 98% control efficiency

Nighthawk Compressor Station Condensate Tank Emissions Calculations ONEOK Rockies Midstream, L.L.C.

T.7 Unit ID:

Uncontrolled Emissions

Pollutant	Working Losses	Losses		Breathing Losses	Losses		Flashing Losses	osses		Annual Emissions	issions	Opera	Operating Hours		Conversion	sion		Hourly Emissions ¹	issions
VOC2	43.98	ΤΡΥ	+	1.91	ТРҮ	+	295.00	TPY	п	340.89	ТРҮ	Ĺ	8,760	×	2,000	lb/ton	п	77.83	lb/hr
n-Hexane	0.70	ТРҮ	+	0.03	ТРҮ	+	4.72	ТРҮ	п	5,45	ТРҮ	,	8,760	×	2,000	lb/ton	п	1,25	lb/hr
Benzene	0.40	ΤΡΥ	+	0.02	TPY	+	2.66	ТРҮ		3.07	ТРҮ	_	8,760	×	2,000	lb/ton	п	0.70	lb/hr
Toluene	0.57	ΤΡΥ	+	0,02	TPY	+	3.84	ТРҮ	"	4.43	ТРҮ	_	8,760	×	2,000	lb/ton	п	1.01	lb/hr
Ethylbenzene	0.04	ТРҮ	+	<0.01	ТРҮ	+	0:30	ТРҮ	п	0.34	ТРҮ	,	8,760	×	2,000	lb/ton	п	80'0	lb/hr
Xylenes	0.22	ТРҮ	+	0.01	ТРҮ	+	1.48	ТРҮ	п	1.70	ТРҮ	,	8,760	×	2,000	lb/ton	п	0.39	lb/hr
Other HAP	07'0	ТРҮ	+	0.02	ТРҮ	+	2.66	ТРҮ	п	3.07	ТРУ	, ,	8,760	×	2,000	lb/ton	п	0.70	lb/hr
co ₂		ТРҮ	+		TPY	+	2.80	TPY	н	2,80	TPY	, ,	8,760	×	2,000	lb/ton	п	0.64	lb/hr
² CH ³		ТРҮ	+		TPY	+	30.49	ТРҮ	п	30.49	TPY	, ,	8,760	×	2,000	lb/ton	п	96'9	lb/hr

Controlled Emissions⁴

Pollutant		Working Losses		Breathing Losses	Losses		Flashing Losses	Losses		Annual Emissions	nissions	ğ	Operating Hours	5	Conversion	rsion		Hourly E.	Hourly Emissions
NOC	1.31	TPY	+	90.0	TPY	+	8.79	ТРҮ	"	10,16	ΤΡΥ	_	8,760	×	2,000	lb/ton	"	2,32	lb/hr
n-Hexane	0.02	TPY	+	<0.01	TPY	+	0.14	ТРҮ	ш	0.16	ΤΡΥ	_	8,760	×	2,000	lb/ton	п	0.04	lb/hr
Benzene	0.01	ТРҮ	+	<0.01	TPY	+	80.0	ТРҮ	ш	60'0	ΤΡΥ	~	8,760	×	2,000	lb/ton	п	0.02	lb/hr
Toluene	0.02	ТРҮ	+	<0.01	ТРҮ	+	0.11	ТРҮ	п	0.13	ТРҮ	/	8,760	×	2,000	lb/ton	п	0.03	lb/hr
Ethylbenzene	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.01	ТРҮ	п	0.01	ТРҮ	/	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Xylenes	0.01	ТРҮ	+	<0.01	TPY	+	0.04	ТРҮ	п	0.05	ТРҮ	/	8,760	×	2,000	lb/ton	п	0.01	lb/hr
Other HAP	10.0	ТРҮ	+	<0.01	TPY	+	80.0	ТРҮ	=	60'0	ТРҮ	/	8,760	×	2000	lb/ton	=	0,02	lb/hr
CO	_	ТРҮ	+		ТРҮ	+	80.0	ТРҮ	=	0.08	TPY	/	8,760	×	2000	lb/ton	=	0.02	lb/hr
CH⁴		ТРҮ	+		TPY	+	0.91	TPY	=	0.91	TPY	1	8,760	×	2000	b/ton	=	0.21	lb/hr

Estimated HAP Composition (% by Weight)⁵

Number Number Number	
. 0 1 0 0 0	ıt Wt%
	exane 1.600%
	nzene 0.900%
	1.300%
	nzene 0.100%
	/lenes 0.500%
	r HAP 0.900%
Total HAP = 5.300%	1AP = 5.300%

- 1) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.
 2) VOC TPY breathing losses calculated from lb/yr ProMax flash emission results as follows. lb/yr * 1/2000 = TPY. VOC working losses and VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bb fractor * annual bb throughput * 1/2000 = TPY.
- 3) Per API Chapter 5: CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing, working and breathing loss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.
- 4) Condensate tank emissions are routed to the VOC flare with 99% capture efficiency and 99% combustor control efficiency for 98.01% effective control efficiency. ORM requested a federally enforceable limit of 5.99 tons per year per tank by adding the tanks to the North Dakota Tank Registry.
 - 5) HAP composition of tank vapors calculated with representative ProMax process simulation.

Nighthawk Compressor Station Condensate Tank Emissions Calculations ONEOK Rockies Midstream, L.L.C.

(EACH) TK-2 - TK-31 Unit ID:

Uncontrolled Emissions

Pollutant	Working Losses	Losses		Breathing Losses	Losses		Flashing Losses	Losses		Annual Emissions	nissions	Ope	Operating Hours	S.	Conversion	rsion		Hourly Emissions ²	issions ²
VOC3	44.00	ТРҮ	+	1.91	TPY	+	00.00	ТРҮ	=	45.91	ТРҮ	/	8,760	×	2,000	lb/ton	=	10,48	lb/hr
n-Hexane	02'0	ТРҮ	+	0.03	TPY	+	00'0	ТРҮ	п	0.73	ТРҮ	/	8,760	×	2,000	lb/ton	=	0.17	b/hr
Benzene	07'0	ТРҮ	+	0.02	TPY	+	00'0	ТРҮ	п	0.41	ТРҮ	1	8,760	×	2,000	lb/ton	=	60'0	lb/hr
Toluene	25.0	ТРҮ	+	0.02	ТРҮ	+	00.00	ТРҮ	п	09'0	ТРҮ	1	8,760	×	2,000	lb/ton	п	0.14	lb/hr
Ethylbenzene	0.04	ТРҮ	+	<0.01	TPY	+	0.00	TPY	п	0.05	ТРҮ	1	8,760	×	2,000	lb/ton	=	0.01	lb/hr
Xylenes	0.22	ТРҮ	+	0.01	ТРҮ	+	00.00	TPY	п	0.23	ТРҮ	,	8,760	×	2,000	lb/ton	ш	0.05	lb/hr
Other HAP	0.40	ТРҮ	+	0.02	ТРҮ	+	00.00	ТРҮ	п	0.41	ТРҮ	,	8,760	×	2,000	lb/ton	=	60'0	lb/hr
CO24	-	ТРҮ	+	1	ТРҮ	+	00.00	ТРҮ	п	00.0	ТРҮ	/	8,760	×	2,000	lb/ton	=	00'0	lb/hr
CH4⁴		ТРҮ	+	1	ТРҮ	+	00.00	ТРҮ	п	00.0	ТРҮ		8,760	×	2,000	lb/ton	=	00'0	lb/hr

Controlled Emissions⁵

	l	l				l		ĺ	l								L		
Pollutant	Working Losses	Losses		Breathing Losses	Losses		Flashing Losses	Losses		Annual Emissions	missions	Ope	Operating Hours	ız	Conversion	rsion		Hourly Emissions	nissions
NOC	1.31	ТРҮ	+	90'0	ТРҮ	+	00.00	ТРҮ	=	1.37	ТРҮ	/	8,760	×	2,000	lb/ton	=	0.31	lb/hr
n-Hexane	0.02	ТРҮ	+	<0.01	ТРҮ	+	00.00	ТРҮ	=	0.02	ТРҮ	/	8,760	×	2,000	lb/ton	=	<0.01	lb/hr
Benzene	0.01	ТРҮ	+	<0.01	ТРҮ	+	00.00	ТРҮ	=	0.01	ТРҮ	/	8,760	×	2,000	lb/ton	=	<0.01	lb/hr
Toluene	0.02	TPY	+	<0.01	ТРҮ	+	00.00	ТРҮ	=	0.02	ТРҮ	/	8,760	×	2,000	lb/ton	=	<0.01	lb/hr
Ethylbenzene	<0.01	ТРҮ	+	<0.01	TPY	+	00.00	ТРҮ	п	<0.01	ТРҮ	_	8,760	×	2,000	lb/ton	ıı	<0.01	lb/hr
Xylenes	0.01	ТРҮ	+	<0.01	ТРҮ	+	00.00	ТРҮ	ш	0.01	ТРҮ	/	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Other HAP	0.01	ТРҮ	+	<0.01	ТРҮ	+	00.00	ТРҮ	=	0.01	ТРҮ	/	8,760	×	2000	lb/ton	н	<0.01	lb/hr
c02		ТРҮ	+	ı	ТРҮ	+	00.00	ТРҮ	=	00'0	ТРҮ	/	8,760	×	2000	b/ton	н	00'0	b/hr
CH₄		ТРҮ	+		ТРҮ	+	0.00	ТРҮ	=	00.0	ТРҮ	/	8,760	×	2000	lb/ton	п	00.00	lb/hr

Estimated HAP Composition (% by Weight)⁶

	n-Hexane 1.600%	Benzene 0.900%	Toluene 1.300%	Ethylbenzene 0.100%	Xylenes 0.500%	Other HAP 0.900%	Total HAP = 5,300%
Oldini	-u	В	T	Ethylb	`	Oth	Tota

- 1) The tanks are connected in one series of three tanks; therefore, condensate flows through each tank in each series and only flashes at the inlet to the first tank in each series (TK-1).
- 2) Due to variable short-term emission rates, average Ib/hr based on annual emissions shown for reference only.

 3) VOC TPY breathing losses calculated from Ib/yr ProMax flash emission results as follows: Ib/yr * 1/2000 = TPY. VOC working losses and VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission results as follows: Ib/yr * 1/2000 = TPY. VOC working losses and VOC, CO₂ and CH₄ TPY flashing losses calculated from Ib/yr ProMax flash emission results as follows: Ib/yr * 1/2000 = TPY. factor as follows: Ib/bbl factor * annual bbl throughput * 1/2000 = TPY,
 - 4) Per API Chapter 5: CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing, working and breathing boss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.
 - 5) Condensate tank emissions are routed to the combustor with 98% capture efficiency and 98% control efficiency, for 96.04% effective control efficiency. ORM requested a federally enforceable limit of 5.99 tons per year per tank by adding the tanks to the North Dakota Tank Registry.
 - 6) HAP composition of tank vapors calculated with site-specific ProMax process simulation.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Produced Water Tank Emissions Calculations

WTK-1 Unit ID:

Uncontrolled Emissions

Pollutant	Working Losses	-osses		Breathing Losses	Losses		Flashing Losses	Losses	L	Annual Emissions	missions	ő	Operating Hours	II.S	Conversion	rsion		Hourly E	Hourly Emissions ¹
VOC ²	<0.01	ТРҮ	+	0.02	ТРҮ	+	1.26	ТРҮ	п	1.28	ТРҮ	_	8,760	×	2,000	lb/ton	п	0,29	lb/hr
n-Hexane	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.02	TPY	=	0.02	ТРҮ	_	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Benzene	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.01	ТРҮ	=	0.01	ТРҮ	_	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Toluene	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.02	ТРҮ	=	0.02	ТРҮ	_	8,760	×	2,000	lb/ton	н	<0.01	lb/hr
Ethylbenzene	<0.01	ТРҮ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	=	<0.01	ТРҮ	'	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Xylenes	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.01	ТРҮ	=	0.01	ТРҮ	_	8,760	×	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.01	ТРҮ	=	0.01	ТРҮ	/	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
co ₂		ТРҮ	+		TPY	+	0.01	TPY	=	0.01	ТРҮ	/	8,760	×	2,000	lb/ton	=	<0.01	lb/hr
CH4³	•	ТРҮ	+		TPY	+	0.13	ТРҮ	=	0.13	ТРҮ	/	8,760	×	2,000	b/ton	=	0.03	b/hr

Controlled Emissions⁴

Pollutant	Pollutant Working Losses	sess		Breathing Losses	Losses		Flashing Losses	Losses		Annual Emissions	missions	ð	Operating Hours	II.S	Conversion	rsion	L	Hourly E	Hourly Emissions
NOC	<0.01	ТРҮ	+	<0.01	ТРҮ	+	0.04	ТРҮ	п	0.04	TPY	\	8,760	×	2,000	lb/ton	п	0.01	lb/hr
n-Hexane	<0.01	ТРҮ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	н	<0.01	ТРҮ	_	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Benzene	00.00	ΤΡΥ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	=	<0.01	ТРҮ	_	8,760	×	2,000	lb/ton	"	<0.01	lb/hr
Toluene	<0.01	ΤΡΥ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	п	<0.01	ТРҮ	_	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Ethylbenzene	00.00	ТРҮ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	=	<0.01	ТРҮ	_	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Xylenes	00.00	ТРҮ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	н	<0.01	ТРҮ	,	8,760	×	2,000	lb/ton	п	<0.01	lb/hr
Other HAP	00.00	ΤΡΥ	+	<0.01	ТРҮ	+	<0.01	ТРҮ	п	<0.01	ТРҮ	_	8,760	×	2000	lb/ton	п	<0.01	lb/hr
c02		ТРҮ	+		ТРҮ	+	<0.01	TPY	=	<0.01	ТРҮ	/	8,760	×	2000	lb/ton	п	<0.01	lb/hr
CH⁴		ТРҮ	+	•	ТРҮ	+	<0.01	ТРҮ	=	<0.01	ТРҮ	/	8,760	×	2000	lb/ton	П	<0.01	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1,600%
Benzene	%006.0
Toluene	1,300%
Ethylbenzene	0.100%
Xylenes	%009'0
Other HAP	0.900%
Total HAP =	2.300%

- 1) Due to variable short-term emission rates, average la/hr based on annual emissions shown for reference only.
 2) VOC TPY working and breathing losses calculated from la/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC TPY flashing losses calculated with ProMax flash emission factor as follows: lb VOC/bbl * annual bbl throughput * 1/2000 = TPY.
- 3) Per API Chapter 5. CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing; working and breathing loss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.
 - 4) Water tank emissions are routed to the VOC flare with 99% capture efficiency and 99% combustor control efficiency for 98.01% effective control efficiency.
- 5) HAP composition of tank vapors calculated with site-specific ProMax process simulation.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Truck Loading Information

Equipment Information	
	TL-1
Contents Loaded	Condensate
Fill Method	Submerged
Type of Service	Dedicated
Mode of Operation	Normal
Saturation Factor	0.6
Throughput (1000 gal/yr)	10,500
Throughput (10 ⁶ gal/yr)	10.500
Maximum Loading Rate (gal/hr)	7,500
VOC Emission Factor (lb/bbl)	0.1600
ProMax Flash Gas CH₄ wt%	0.015%
ProMax Flash Gas CO ₂ wt%	0.004%
Control Type	None

- 1) Based on vapor analysis of loading operations at nine ORM facilities.
- 2) API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12. Emission factor converted as follows: tonne/ 10^6 gal * 1.10231131 ton/tonne.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Condensate Truck Loading Emissions Calculations

1 Unit ID:

Uncontrolled Emissions

Pollutant		Emission Factor		Throu	Throughput		Conversion	rsion		Annual Emissions	sions	Opera	Operating Hours	S.	Conversion	rsion	Avera	ige Hourly	Average Hourly Emissions
NOC	VOC 0.1600	qq/q	×	X 250,000	bbl/yr	×	0.0005	ton/lb	=	20.00	TPY		8,760	×	2,000	lb/ton	"	4.57	lb/hr
n-Hexane						,			п	0.32	ΤΡΥ		8,760	×	2,000	lb/ton	11	0.07	lb/hr
Benzene						-		-	"	0.18	ТРҮ		8,760	×	2,000	lb/ton	ıı	0.04	lb/hr
Toluene									п	0.26	ТРҮ	/	8,760	×	2,000	b/ton	Ш	90'0	lb/hr
Ethylbenzene									п	0.02	ТРҮ	/	8,760	×	2,000	lb/ton	П	<0.01	lb/hr
Xylenes	-			-		-		-	ıı	0.10	ТРҮ	,	8,760	×	2,000	lb/ton	ıı	0.02	lb/hr
Other HAP		•			•				П	0.18	ТРҮ	/	8,760	×	2,000	lb/ton	Ш	0.04	lb/hr
CO	1.00	ton/10 ⁶ gal	×	10.500	X 10.500 10 ⁶ gal/yr	×	0.004%	Wt%	П	<0.01	ТРҮ	/	8,760	×	2,000	b/ton	=	<0.01	lb/hr
CH₄	1.00	$ton/10^6$ gal $ imes$ 10.500 $ imes$ 10 6 gal/yr	×	10.500	10 ⁶ gal/yr	×	0.015%	Wt%	п	. 10.0>	TPY	/	8,760	×	2,000	b/ton	п	<0.01	lb/hr

Estimated HAP Composition (% by Weight)²

Pollutant	Wt%
n-Hexane	1.600%
Benzene	%006.0
Toluene	1.300%
Ethylbenzene	%001.0
Xylenes	%005.0
Other HAP	%006.0
Total HAP =	%008'S

¹⁾ Due to variable short-term emission rates, average lb/hr rate shown for reference only.
2) See speciated liquids analysis on Facility Analyses page. HAP weight% calculated as % of total hydrocarbons in the sample. All HAP assumed to volatize from liquids for most conservative emissions estimate.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Methanol Tank Information

Equipment Information	
	MTK-1
Contents	Methanol
Number of Tanks	1
Capacity (bbl)	400
Capacity (gal)	16,800
Total Throughput (bbl/yr)	6,811
Total Throughput (gal/yr)	286,062
Per Tank Throughput (bbl/yr)	6,811
Per Tank Throughput (gal/yr)	286,062
ODEQ Calculation Tool Working Losses (lb/yr) ²	204.60
ODEQ Calculation Tool Breathing Losses (lb/yr) ²	130.60
Control Type	None

¹⁾ Working and breathing calculated using ODEQ Calculation Tool. See attached reports and following table.

Methanol Tank Emissions Calculations ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station

MTK-1 Unit ID:

Uncontrolled Emissions

Pollutant	Working l	Losses		Breathing	Losses		Annual En	nissions	Ope	erating Hour	ß	Convei	rsion		Hourly Em	issions ¹
VOC/Methanol ²	01.0	ТРҮ	+	0.07	ТРҮ	П	0.17	ТРҮ	/	8,760	×	2,000	lb/ton	=	0.04	lb/hr

¹⁾ Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

2) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY.

Nighthawk Compressor Station Fugitive Equipment Data and Emission Factors ONEOK Rockies Midstream, L.L.C.

	suo	ТРҮ	ΤΡΥ	ТРҮ	TPY	TPY	ТРҮ
	Annual Emissions	1	_	_	_	_	_
	Annual	8.15	2.57	2.64	5.10	0.34	0.85
		=	П	Ш	П	П	II
	Conversion	ton/lb	ton/lb	ton/lb	ton/lb	ton/lb	ton/lb
sions	Conv	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
TOC Emissions		×	×	×	×	×	×
TOC	Hourly Emissions Operating Hours	8,760	8,761	8,760	8,760	8,760	8,760
	Opera	×	×	×	×	×	×
	missions	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
	Hourly E	1.86	0.59	09.0	1.16	0.08	0.19
		=	п	п	П	П	П
	Control Efficiency	75.00%	30.00%	30.00%	%00'0	75.00%	%00.0
	Conti	×	×	×	×	×	×
rvice	Emission Factor ²	lb/hr/source	lb/hr/source	lb/hr/source	lb/hr/source	lb/hr/source	lb/hr/source
Equipment Information - Gas Service	Emissio	X 9.92E-03	4.41E-04	8.60E-04	1.94E-02	1.94E-02	X 1.94E-02
Informa	t1	×	×	×	×	×	×
uipment	Count		1900	1000	09	16	
Ĭ	Component	Valves - Gas 750	Connectors - Gas	Flanges - Gas 1000	Relief Valves - Gas	Compressor Seals - Gas	Other - Gas 10

Equ	ipment Ir	ıformat	Equipment Information - Liquid Service	ervice							100	TOC Emissions	ions				
Component Count ¹	Coun	t1	Emissio	Emission Factor ²	Contr	Control Efficiency		Hourly Em	issions	Operat	Hourly Emissions Operating Hours		Conversion	rsion		Annual Emissions	issions
Valves - Light Oil 380 X 5.51E-03 lb/hr/source	380	×	5.51E-03	lb/hr/source	×	75.00%	II	0.52	lb/hr	×	8,760	×	0.0005	ton/lb	II	2.29	ТРҮ
Flanges - Light Oil 40 X 2.43E-04	40	×	2.43E-04	lb/hr/source	×	30.00%	п	0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	0.03	ТРҮ
Connectors - Light Oil 1,100	1,100		X 4.63E-04	lb/hr/source	×	30.00%	П	0.36	lb/hr	×	8,760	×	0.0005	ton/lb	II	1.56	ТРҮ
Pump Seals - Light Oil 2	2	×	X 2.87E-02	lb/hr/source	×	75.00%	п	0.01	lb/hr	×	8,760	×	0.0005	ton/lb	П	90.0	ТРҮ
Other - Light Oil	5	×	X 1.65E-02 lb/hr/source	lb/hr/source	×	0.00%	п	0.08	lb/hr	×	8,760	×	0.0005	ton/lb	II	0.36	ТРҮ

¹⁾ Component counts estimated based on similar site.
2) Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Fugitive Emissions Calculations

Component		VOC Emissions	issions			CO ₂ Emissions	issions			CH₄ Emissions	ssions			H ₂ S Emissions	issions	
Valves - Gas	0.70	lb/hr	3.08	ТРҮ	0.02	lb/hr	0.11	ТРҮ	0.70	lb/hr	3.07	ТРҮ	00.0	lb/hr	00.00	ТРҮ
Connectors - Gas	0.22	b/hr	0.97	ТРУ	0.01	b/hr	0.03	ТРҮ	0.22	b/hr	26.0	ТРҮ	00.00	lb/hr	0.00	ТРУ
Flanges - Gas	0.23	b/hr	1.00	ТРҮ	0.01	b/hr	0.03	ΤΡΥ	0,23	b/hr	66.0	ТРҮ	00.00	lb/hr	00.00	TP≺
Relief Valves - Gas	0.44	b/hr	1.93	TPY	0.02	b/hr	0.07	ТРҮ	0.44	b/hr	1.92	ТРҮ	00.00	b/hr	0.00	ТРУ
Compressor Seals - Gas	0.03	b/hr	0.13	TPY	<0.01	b/hr	<0.01	ΤΡΥ	0.03	lb/hr	0.13	TPY	00.00	lb/hr	00.00	ΤPΥ
Other - Gas	0.07	b/hr	0.32	TPY	<0.01	b/hr	0.01	ТРУ	0.07	b/hr	0.32	ТРҮ	0.00	b/hr	0.00	ТРУ
Valves - Light Oil	0.52	b/hr	2.28	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	00.00	lb/hr	0.00	ΤΡΥ
Flanges - Light Oil	0.01	b/hr	0.03	TPY	<0.01	b/hr	<0.01	ТРУ	<0.01	b/hr	<0.01	ТРҮ	0.00	lb/hr	0.00	ТРУ
Connectors - Light Oil	0.36	b/hr	1.56	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	00.00	lb/hr	00.00	ТРҮ
Pump Seals - Light Oil	0.01	b/hr	90.0	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	0.00	b/hr	0.00	ΤPΥ
Other - Light Oil	0.08	b/hr	0.36	TPY	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	00.00	b/hr	00.00	ТРҮ
Total	2.67	lb/hr	11.71	ТРҮ	90'0	lb/hr	0.26	ТРҮ	1.69	lb/hr	7.40	ТРУ	0.00	lb/hr	0.00	ТРҮ

								ŀ				İ			I	ŀ			I	İ	I	l	I	
Component		n-Hexane Emissions	:missions		ď	Benzene Em	missions		ř	Toluene Emissions	missions		Ethy	benzene	Ethylbenzene Emissions		×	Xylene Emissions	issions		2,2,4-Tri	nethylpe	2,2,4-Trimethylpentane Emissions	ssions
Valves - Gas	0.01	lb/hr	0.04	TPY	<0.01	lb/hr	<0.01	TPY	<0.01	lb/hr	<0.01	ΤPY	<0.01	lb/hr	<0.01	ΤΡΥ	<0.01	lb/hr	<0.01	ΤPΥ	<0.01	lb/hr	<0.01	ТРҮ
Connectors - Gas	<0.01	lb/hr	0.01	TPY	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ΤΡΥ
Flanges - Gas	<0.01	lb/hr	0.01	TPY	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	TP≺	<0.01	lb/hr	<0.01		<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ΤΡΥ
Relief Valves - Gas	0.01	b/hr	0.03	ТРУ	<0.01	b/hr	<0.01	ΤPΥ	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	¥d⊥	<0.01	b/hr	<0.01	TPY	<0.01	b/hr	<0.01	₹
Compressor Seals - Gas	<0.01	lb/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	TPY	<0.01	b/hr	<0.01	¥d⊥	<0.01	b/hr	<0.01	TPY	<0.01	b/hr	<0.01	ΤΡΥ
Other - Gas	<0.01	b/hr	<0.01	TP√	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	¥d⊥	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ΤΡΥ
Valves - Light Oil	0.11	lb/hr	0.47	ТРҮ	<0.01	b/hr	0.02	ΤΡΥ	0.01	b/hr	0.04	ТРҮ	<0.01	b/hr	0.01	ΤΡΥ	0.01	b/hr	0.02	TPY	00.00	b/hr	00.00	ΤΡΥ
Flanges - Light Oil	<0.01	lb/hr	0.01	ТРҮ	<0.01	b/hr	<0.01	ТРУ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ТРҮ	0.00	b/hr	00.00	ΤΡΥ
Connectors - Light Oil	0.07	b/hr	0.32	ТРҮ	<0.01	lb/hr	0.01	TPY	0.01	b/hr	0.02	ΤΡΥ	<0.01	b/hr	0.01	TPY	<0.01	b/hr	0.02	ΤΡΥ	00.00	b/hr	00.00	ΤΡΥ
Pump Seals - Light Oil <0.01	<0.01	b/hr	0.01	ТРУ	<0.01	lb/hr	<0.01	ΤΡΥ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	<0.01	−	<0.01	b/hr	<0.01	ТРҮ	00.00	b/hr	00.00	ΤPΥ
Other - Light Oil 0.02	0.02	lb/hr	0.07	ТРҮ	<0.01	b/hr	<0.01	ТРҮ	<0.01	b/hr	0.01	ТРҮ	<0.01	b/hr	<0.01	TPY	<0.01	b/hr	<0.01	ТРҮ	00.00	b/hr	00.00	ТРУ
Total	0.22	lb/hr	86'0	ТРҮ	0.01	b/hr	0.05	ТРҮ	0.02	lb/hr	80.0	ТРҮ	<0.01	lb/hr	0.01	TPY	0.01	lb/hr	90'0	ТРҮ	<0.01	b/hr	0.01	ТРҮ

Notes:
1) TOC from previous table multiplied by pollutant content of streams (weight%) to obtain pollutant emissions. See attached analyses table.

ONEOK Rockies Midstream, L.L.C. Nighthawk Compressor Station Miscellaneous Venting and Blowdown Emissions Calculations

		Stream 1	Emic	sions
	Molecular	Inlet Gas	LIIIS	SIUIIS
Component	Weight	Mole %	scf/yr ¹	TPY ²
Hydrogen Sulfide	34.081	0.000%	0	0.00
Carbon Dioxide	44.010	0.768%	3,594	0.21
Nitrogen	28.013	2.471%	11,565	0.43
Helium	4.003	0.000%	0	0.00
Oxygen	31.999	0.000%	0	0.00
Methane	16.043	58.397%	273,297	5.78
Ethane	30.069	20.291%	94,964	3.76
Propane	44.096	10.713%	50,136	2.91
i-Butane	58.122	1.168%	5,466	0.42
n-Butane	58.122	3.672%	17,184	1.32
i-Pentane	72.149	0.673%	3,150	0.30
n-Pentane	72.149	1.029%	4,815	0.46
n-Hexane	86.175	0.157%	732	80.0
Other Hexanes	86.175	0.435%	2,036	0.23
Heptanes	100.202	0.082%	384	0.05
Benzene	78.114	0.017%	79	0.01
Toluene	92.141	0.013%	61	0.01
Ethylbenzene	106.167	0.001%	4	<0.01
Xylenes	106.167	0.004%	18	<0.01
Octanes	114.229	0.000%	0	0.00
2,2,4-Trimethylpentane	114.231	0.008%	39	0.01
Nonanes	128.255	0.000%	0	0.00
Decanes	142.282	0.000%	0	0.00
	Totals =	99.898%	467,525	15.97
		Total VOC =	84,104	5.80
		Total HAP =	933	0.11

Estimated Annual Volume 468,000 scf/yr Molar volume conversion @60° F and 1 atm: 1 lb/mole = 379.4 scf

- 1) Calculated as follows: Total Losses scf/yr * mol% of component.
 2) Calculated as follows: component scf/yr / 379.4 molar volume conversion * MW component / 2000 lb/ton.

Equipment Specification

Proposal Information Proposal Number: NC-24-005073 Rev(2) Project Reference: OneOK ND/ 3608

Date: 7/25/2024

Engine Information

CAT Engine Make: Engine Model: G3608 Rated Speed: 1000 RPM Fuel Description: Natural Gas

Power Output: 2,750 bhp 32,972 lb/hr **Exhaust Flow Rate:** Exhaust Temperature: 756° F **Fuel Consumption:**

Hours Of Operation: 8760 Hours per year Load: 100% Propane: 10.21%

12% O₂: H₂O: 15%

Emission Data (100% Load)

		Rav	w Engine	Emissi	ons			Targ	get Outle	t Emissi	ons		
Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
NO _x *	0.5	13.28	45	68	0.671	1.48	1	26.55	90	136	1.341	2.96	
СО	2.98	79.13	443	668	3.996	8.81	1.13	30.01	168	253	1.515	3.34	62.1%
NMNEHC**	0.77	20.45	200	301	1.033	2.28	0.6	15.93	156	235	0.805	1.77	22.1%
CH ₂ O	0.18	4.78	25	38	0.241	0.53	0.02	0.53	3	4	0.027	0.06	88.9%

System **Specifications**

Oxidation (SP-RHSIGA-54-TBD)

Housing Model Number: SP-RHSIGA-54-TBD-HSG

Element Model Number: APXP-OX-SB2700-2421-2338-291

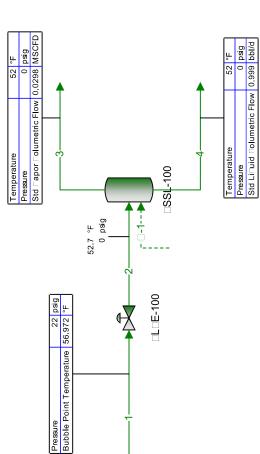
4 Number of Catalyst Elements per Engine: Number of Spare Catalyst Tracks: 2

Maximum Wind Loading: 100 mph

System Pressure Loss: 7 inches of WC (Clean) (18 mBar)

Design Exhaust Flow Rate: 32,972 lb/hr Design Exhaust Temperature: 756° F

Exhaust Temperature Limits***: 550° F – 1250° F (catalyst inlet); 1350° F (catalyst outlet)


^{*} MW referenced as NO₂

^{**} MW referenced as CH4. Propane in the exhaust shall not exceed 15% by volume of the NMHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

Galaxy – Flash Calc 9/19/2018

Sample Pressure: 22 psig Sample Temperature: 60 F

Atm Tan Losses

Working Losses Factor - 0.3518 lb/d Breathing Losses Factor -3,823 lb/yr Flashing Losses Factor - 2.36 lb/d CO2 Tank Flashing Emission Factor - 0.005395 lb CO2/bbl CH4 Tank Flashing Emission Factor - 0.2381 lb CH4/bbl

Names	□nits	_	2	3	4
Temperature	¥	25	52.7	52*	25
Pressure	psig	22*	*0	0	0
Mole Fraction □apor	%	*0	3.02	100	0
Molecular Weight	lomd /d	90.3	90.3	41.4	91.8
Mass Density	lb/ft⊡	42.7	6.46	0.105	43
Mass Flow	lb/h	10	10	0.136	6.6
Molar Flow	lbmol/h	0.111	0.111	0.00328	0.108
Compressibility		0.0136	0.0349	0.985	0.00534
Specific Gravity		0.684		1.43	0.689
Std □apor □olumetric Flow MMSCFD		0.00101	0.00101	2.98e-05 0.000982	0.000982
Std Li □uid □olumetric Flow sgpm	sgpm	0.0297	0.0297	0.000562	0.0291
Enthalpy	MMBtu/h	-0.00953	-0.00953	-0.00953 -0.00953 -0.000146	-0.00939

Names	nits	_	7	က	4
N2(Mole Fraction)	%	0.030001*	0.030001	0.97061	0.0014108
CO2(Mole Fraction)	%	0.0070002*	0.0070002	0.15591	0.002474
C1(Mole Fraction)	%	0.65502*	0.65502	18.876	0.1012
C2(Mole Fraction)	%	1.7811*	1.7811	26.616	1.0262
C3(Mole Fraction)	%	4.1091*	4.1091	24.146	3,5001
iC4(Mole Fraction)	%	1.583*	1.583	3.7436	1.5174
nC4(Mole Fraction)	%	8.1042*	8.1042	12,775	7.9623
iC5(Mole Fraction)	%	6.0012*	6.0012	3.704	6.071
nC5(Mole Fraction)	%	12 923*	12.923	5.754	13.141
C6(Mole Fraction)	%	18.769*	18.769	2,2195	19.272
C7(Mole Fraction)	%	21.629*	21.629	0.72876	22.264
C8(Mole Fraction)	%	14.179*	14.179	0.13362	14.606
C9(Mole Fraction)	%	3.8651*	3.8651	0.010132	3,9823
C11(Mole Fraction)	%	*0	0	0	0
C12(Mole Fraction)	%	*0	0	0	0
Ben ene (Mole Fraction)	%	1.023*	1.023	0.12295	1.0504
Toluene(Mole Fraction)	%	1.139*	1.139	0.0349	1.1726
Ethylben ene (Mole Fraction)	%	0.22001*	0.22001	0.0019465	0.22663
o-Xylene(Mole Fraction)	%	1.057*	1.057	0.0071934	1.0889
m-Xylene(Mole Fraction)	%	*0	0	0	0
p-Xylene(Mole Fraction)	%	*0	0	0	0
C10□(Mole Fraction)	%	2.9251*	2.9251	4.2485e-06	3.014