

SUBMITTED VIA CERIS-ND

August 17, 2024

Mr. Jim Semerad North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324

ONEOK ROCKIES MIDSTREAM, L.L.C. ALAMO COMPRESSOR STATION PERMIT TO CONSTRUCT APPLICATION

Dear Mr. Semerad:

ONEOK Rockies Midstream, L.L.C. (ORM) operates the Alamo Compressor Station, located in Williams County, pursuant to Permit No. ACP-18226. ORM submits this Permit to Construct application to update condensate tank and loading emissions and increase throughput through the facility.

Enclosed with this letter are required application forms, emissions calculations, supporting documents and previously submitted application, as well as a check in the amount of \$325.00 for the application fee. If you need additional information or have any questions, please contact me at 918-588-7862 or Joshua.Hills@oneok.com.

Sincerely,

2 Un

Joshua Hills Environmental Professional

Enclosures

xc: K. Rudningen/V. Danzeisen/L. Weltikol/D. Vande Bossche/G. Roe/K. Hanner/R. Brown (.pdf) Tulsa Environmental Files – Alamo Compressor Station – Permit Actions - ACTS

Permit to Construct Application

Alamo Compressor Station

ONEOK Rockies Midstream, L.L.C.

Submitted to NDDEQ Division of Air Quality August 2024

Table of Contents

Table of Contents	i
Introduction	1
Facility Equipment	1
Process Description	1
Regulatory Applicability	1
Application Forms	3
Form SFN 8516 – Permit Application for Air Contaminant Sources	4
Form SFN 8535 – Permit Application for Volatile Organic Compounds Storage Tank	7
Form SFN 8520 – Permit Application for Manufacturing or Processing Equipment	11
Appendix A – Maps and Drawings	21
Figure 1 – Area Map	22
Figure 2 – Process Flow Diagram	23
Appendix B – Emissions Calculations	24
Appendix C – Support Documents	
ProMax Process Simulation Report	

Introduction

ONEOK Rockies Midstream, L.L.C. (ORM) operates the Alamo Compressor Station, located in Williams County, pursuant to Permit No. ACP-18226. ORM submits this Permit to Construct application to update condensate tank and loading emissions and increase throughput through the facility.

Facility Equipment

After construction, Alamo Compressor Station will consist of one (1) 2,500-hp Waukesha P9394GSI S5 compressor engine, six (6) electric-driven compressors, six (6) 400-bbl condensate storage tanks equipped with a vapor recovery unit (VRU), one (1) 200-bbl methanol tank, and one (1) emergency flare. Associated emission sources include condensate truck loading, fugitive emissions and miscellaneous vents and blowdowns.

Process Description

Alamo Compressor Station transports two-phase field gas from wells through an inlet separation vessel where free liquids (condensate and water) are removed. Natural gas then passes through a suction header that feeds the electric compressors, which boost gas pressure. The compressor units discharge natural gas into a pipeline for transmission. Condensate and water are stored in 400-bbl storage tanks until transported from the site. The condensate storage tanks are equipped with a vapor recovery unit (VRU) that vents to the suction header such that working, breathing and flashing emissions are comingled with the natural gas inlet stream and routed to the compressors. An emergency flare is utilized to combust compressor blowdowns and emergency upsets. Emissions from fugitive components and miscellaneous vents and blowdowns also occur at the facility.

Regulatory Applicability

The facility is a natural gas compressor station that falls under the North American Industrial Classification System (NAICS) code 211130 (formerly Standard Industrial Classification (SIC) 1311).

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ, Stationary Spark Ignition Internal Combustion Engines (SI-ICE) promulgates emission standards for all new SI engines ordered after June 12, 2006, and all SI engines modified or reconstructed after June 12, 2006, regardless of size. The specific emission standards (either in g/hp-hr or as a concentration limit) vary based on engine class, engine power rating, leanburn or rich-burn, fuel type, duty (emergency or non-emergency), and various manufacture dates. The compressor engine was manufactured after July 1, 2010; therefore, is subject to the Stage 2 emissions limitations of this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOO, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification, or reconstruction after August 23, 2011 and on or before September 18, 2015 at crude oil and natural gas p facilities:

- 1. Each single gas well;
- 2. Single centrifugal compressors using wet seals located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 3. Single reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment and not located at a natural gas processing plant;

- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;
- 6. Single storage vessels located in the oil and natural gas production segment, natural gas processing segment, or natural gas transmission and storage segment with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. All equipment, except compressors, within a process unit at an onshore natural gas processing plant;
- 8. Sweetening units located at onshore natural gas processing plants.

The three existing electric-driven compressors were constructed after August 23, 2011 and prior to September 18, 2015; therefore, they are subject to this subpart. The three existing condensate tanks (TK-1 – TK-3) were constructed after August 23, 2011 and prior to September 18, 2015, but ORM has established a federally enforceable limit of less than 6 TPY VOC per tank; therefore, they are not subject to this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOa, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after September 18, 2015 and on or before December 6, 2022 at crude oil and natural facilities:

- 1. Each single oil or gas well that conducts a completion following hydraulic fracturing or refracturing;
- 2. Single centrifugal compressors using wet seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, not located at a natural gas processing plant;
- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;
- 6. Single storage vessels with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. The group of all equipment within a process unit at an onshore natural gas processing plant;
- 8. Sweetening units located at onshore natural gas processing plants;
- 9. Pneumatic pumps at natural gas processing plants and well sites;
- 10. The group of fugitive emissions equipment at a well site;
- 11. The group of fugitive emissions equipment at a compressor station;

The proposed electric-driven compressors will be constructed after September 18, 2015; therefore, they will be subject to this subpart. The three proposed condensate tanks (TK-6 – TK-8) will be constructed after September 18, 2015, but ORM will establish a federally enforceable limit of less than 6 TPY VOC per tank; therefore, they will not be subject to this subpart. With the addition of three (3) electric-driven compressors, the facility will meet the definition of a modified compressor station and will therefore be subject to the leak detection requirements of this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOb, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after December 6, 2022 at crude oil and natural gas facilities:

- 1. Each single oil or gas well;;
- 2. Single centrifugal compressors using wet or dry seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Each collection of natural gas-driven process controllers at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 5. Storage vessel batteries with either the potential for VOC emissions equal to or greater than 6 tons per year or the potential for methane emissions equal to or greater than 20 tons per year;
- 6. The group of all equipment within a process unit at an onshore natural gas processing plant;
- 7. Sweetening units;

- 8. The group of all natural gas-driven pumps at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 9. The group of fugitive emissions equipment at a well site, centralized production facility or compressor station;

The six existing electric-driven compressors were constructed prior to December 6, 2022; therefore, they are not subject to this subpart. ORM is increasing throughput through the station which is a modification under OOOOb, thus the tanks are subject to this subpart. With the addition of the natural gas engine driven compressor, the facility will meet the definition of a modified compressor station under this subpart; however the facility was subject to OOOOa and is currently in compliance with the NSPS leak detection requirements. The additional natural gas engine driven compressor will also be subject to the OOOOb standards for reciprocating compressors.

National Emission Standards for Hazardous Air Pollutants 40 CFR Part 63 Subpart ZZZZ, Reciprocating Internal Combustion Engines (RICE), affects any existing, new or reconstructed stationary RICE located at a major or area source of HAP emissions. Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. Since the compressor engine is subject to 40 CFR Part 60 Subpart JJJJ, they automatically satisfy the requirements of Subpart ZZZZ by complying with NSPS Subpart JJJJ. There are no further requirements under Subpart ZZZZ for this engine.

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (9-2021)

SECTION A - FACILITY INFORMATION

Name of Firm or Organization ONEOK Rockies Midstream, L.L.C.								
Applicant's Name Dick Vande Bossche								
Title				Telephone Nu	mber	E-mail Add		
Vice President, ONEOK	Rockies Midstrea	am Oper	ations	(406) 433-8710		dick.vandebo	ssche@oneok.com	
Contact Person for A Joshua Hills	vir Pollution Ma	atters						
Title				Telephone Nu	mber	E-mail Add	ress	
Environmental Professio	nal			(918) 588-7862		Joshua.Hills@	Doneok.com	
Mailing Address (Str 100 W. Fifth St.	eet & No.)							
City				State			ZIP Code	
Tulsa				OK			74103	
Facility Name Alamo Compressor Station								
Facility Address (Street & No.) 13393 74th St NW								
City				State			ZIP Code	
Alamo				ND 58830			58830	
County		Coord	inates	NAD 83 in Dec	imal De	egrees (to for	th decimal degree)	
\\/illiama		Latituc	le	Longitude				
Williams		00 -103.5794		3100				
Legal Description of Facility Site								
Quarter	Quarter	Secti		on	Towns	ship	Range	
sw	SW	23		158N		·	100W	
Land Area at Facility	Site			MSL Elevation	at Fac	ility		
<u>15</u> Acres (or) Sq. Ft. 2126 ft								

SECTION B – GENERAL NATURE OF BUSINESS

Describe Nature of Business	North American Industry Classification System Number	Standard Industrial Classification Number (SIC)
Natural Gas Gathering		1311

SECTION C – GENERAL PERMIT INFORMATION

Type of Permit? Permit to Construct (PTC)	Permit to Operate (PTO)
If application is for a Permit to Construct, please prov	ide the following data:
Planned Start Construction Date	Planned End Construction Date
10/2024	11/2024

SFN 8516 (9-2021) Page 2

SECTION D – SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

					-							
Permit to Construct					Minor	Source	e Permi	t to Op	erate			
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
TK 1-8	400-bbl condensate tanks		\checkmark									
TL-1	Truck Loading		\checkmark									

Add additional pages if necessary

SECTION D2 – APPLICABLE REGULATIONS

Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)
Facility-wide	
TK 1-8	NSPS OOOOb

SECTION E – TOTAL POTENTIAL EMISSIONS

	Amount
Pollutant	(Tons Per Year)
NO _x	24.22
СО	48.44
PM	1.54

SFN 8516 (9-2021) Page 3

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	1.54
PM _{2.5} (filterable and condensable)	1.54
SO ₂	0.28
VOC	63.20
GHG (as CO ₂ e)	12196.44
Largest Single HAP	1.20
Total HAPS	3.86

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORMS

Indio	Indicate which of the following forms are attached and made part of the application				
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect		
	(SFN 8532)		Heating (SFN 8518)		
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources		
	(SFN 8522)		(SFN 8329)		
	Natural Gas Processing Plants		Manufacturing or Processing Equipment		
	(SFN 11408)		(SFN 8520)		
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank		
	(SFN 58923)		(SFN 8535)		
	Flares		Internal Combustion Engines and Turbines		
	(SFN 59652)		(SFN 8891)		
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration		
	(SFN 8524)		(SFN 14334)		

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	Process Description and Regulatory Applicability	4.	Emission Calculations
2.	Area Map	5.	Support Documentation
3.	Process Flow Diagram	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature	Docusigned by: Dick Vande Bossche	Date 8/21/2024
	67B797C4193640F	

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
ONEOK Rockies Midstream, L.L.C.	Alamo Compressor Station

SECTION B – TANK DATA

Source ID Nur TK-1 and TK-6	mber (From SFN 8516)					
Capacity	Barrels 400			Gallons 16,800		
Dimensions	Diameter 12	Height 20		Length		Width
Shape	Cylindrical		Spherical		Other –	Specify:
Materials of Construction	(i.e., steel)					
Construction	Riveted		Welded		Other –	Specify:
Color Tan						
Condition	Good		🗌 Fair		Poor	
Status	New Constr	uction	Alteration		Existing Existing Existing	Constructed):
Type of	Fixed Roof			Extern	al Floatin	g
Tank	🗌 Variable Va				al Floating	
	Pressure (lo	w or high)	Other	– Specify:	
Type of Roof	Pan [Double	Deck	Pontoon	Cone	er – Specify:
Type of Seal	Metallic Shoe Seal		Liquid Mounte Resilient Seal	d		Mounted ent Seal
	Primary Seal Only With Rim Mounted With Shoe Mounted Secondary Seal	l Seal	Primary Se With Rim N With Weath	lounted Seal	🗌 Wi	mary Seal Only th Rim Mounted Seal th Weather Shield

SECTION C – TANK CONTENTS

Name all liquids, vapors, gases, or mixtures of such materials to be stored in the tank. Give density (lbs per gal) or A.P.I. Natural gas condensate

SECTION D – VAPOR DISPOSAL

Atmosphere Vapor Recovery Unit Flare Enclosed Combustor Other - Specify:

SFN 8535 (3-2019) Page 2

SECTION E – VAPOR PRESSURE DATA

psia	
Maximum True Vapor Pressure 12.87 psia	Maximum Reid Vapor Pressure

SECTION F – OPERATIONAL DATA

Maximum Filling Rate (barrels per hour or gallons per hour) 200 bbl/hr	Vapor Space Outage (See AP-42, 7.1-92, Equation 1-15)	
Average Throughput (barrels per day or gallons per day) 342 bbl/day	Tank Turnovers per Year	

SECTION G – SOLUTION STORAGE

If material stored is a solution, supply the following information:				
Name of Solvent Name of Material Dissolved				
Concentration of Material Dissolved (% by weight or % by volume or lbs/gal)				

SECTION H – AIR CONTAMINANATS EMITTED

Pollutant*	Maximum Pounds Per Hour	Tons Per Year	Basis and Calculations for Quantities (Attach separate sheet if needed)
VOC	0.99 (Each)	4.35 (Each)	ProMax Process Simulation
CO2e	2.43 (Each)	10.66 (Each)	ProMax Process Simulation

* Include an estimate of greenhouse gas emissions (CO₂e)

SECTION I – STANDARDS OF PERFORMANCE

Tank subject to: 40 CFR 60, Subpart K 40 CFR 60, Subpart Ka 40 CFR 60, Subpart Kb
☐ 40 CFR 60, Subpart OOOO
Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? Yes No – Explain:

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
ONEOK Rockies Midstream, L.L.C.	Alamo Compressor Station

SECTION B – TANK DATA

Source ID Number (From SFN 8516)						
TK-2 - Tk-3 and	d TK-7 - TK-8 (Each)					
Capacity	Barrels 400			Gallons 16,800		
Dimensions	Diameter 12	Height 20		Length	\ \	Width
Shape	Cylindrical		Spherical		Other – S	pecify:
Materials of Construction	(i.e., steel)					
Construction	Riveted		Welded		Other – S	pecify:
Color Tan						
Condition	Good		Fair		Poor	
Status	New Constr	uction	Alteration		Existing ve Date C	onstructed):
Type of	Fixed Roof			External	Floating	
Tank	🗌 Variable Va	oor Space		Internal	Floating	
	Pressure (lo			Other –	Specify:	
Type of Roof	Pan [Double Dec	k □		Other - Cone	– Specify:
Type of Seal	Metallic Shoe Seal		id Mounte ilient Seal	d	Vapor M Resilien	
	 Primary Seal Only With Rim Mounted With Shoe Mounted Secondary Seal 	Seal 🗌 V	Primary Se Vith Rim M Vith Weath	lounted Seal	🗌 With	ary Seal Only Rim Mounted Seal Weather Shield

SECTION C – TANK CONTENTS

Name all liquids, vapors, gases, or mixtures of such materials to be stored in the tank. Give density (lbs per gal) or A.P.I. Natural gas condensate

SECTION D – VAPOR DISPOSAL

Atmosphere Vapor Recovery Unit Flare Enclosed Combustor Other - Specify:

SFN 8535 (3-2019) Page 2

SECTION E – VAPOR PRESSURE DATA

psia	
Maximum True Vapor Pressure 12.87 psia	Maximum Reid Vapor Pressure

SECTION F – OPERATIONAL DATA

Maximum Filling Rate (barrels per hour or gallons per hour) 200 bbl/hr	Vapor Space Outage (See AP-42, 7.1-92, Equation 1-15)	
Average Throughput (barrels per day or gallons per day) 342 bbl/day	Tank Turnovers per Year	

SECTION G – SOLUTION STORAGE

If material stored is a solution, supply the following information:				
Name of Solvent Name of Material Dissolved				
Concentration of Material Dissolved (% by weight or % by volume or lbs/gal)				

SECTION H – AIR CONTAMINANATS EMITTED

Pollutant*	Maximum Pounds Per Hour	Tons Per Year	Basis and Calculations for Quantities (Attach separate sheet if needed)
VOC	0.07 (Each)	0.3 (Each)	ProMax Process Simulation

* Include an estimate of greenhouse gas emissions (CO₂e)

SECTION I – STANDARDS OF PERFORMANCE

Tank subject to: 🗌 40 CFR 60, Subpart K 🗌 40 CFR 60, Subpart Ka 🔲 40 CFR 60, Subpart Kb
☐ 40 CFR 60, Subpart OOOO
Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? ■ Yes □ No - Explain:
Tanks will comply with the requirements under OOOOb.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8520 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Equipment items operating as a functional unit may be grouped as one application				
Name of Firm or Organization Facility Name				
ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station				

SECTION B – EQUIPMENT INFORMATION

Source ID Number (From SFN 8516) TL-1				
Type of Unit or Process (rotary dryer, cupola furnace Condensate Tank Truck Loading	, crusher, pelletizer, etc.)			
Make N/A	Model N/A	Date Installed		
Capacity (manufacturer's or designer's guaranteed	ed Operating Capacity (specific units)			
maximum) 11,038,000 gallons 10,500,000 gallons				
Brief description of operation of unit or process:	•			
Loading operation of the condensate storage	e tanks at the facility.			

SECTION C – NORMAL OPERATING SCHEDULE

Hours Per Day	Days Per Week	Weeks Per Year	Peak Production	Dates of Annual
24	7	52	Season (if any)	Shutdown
			N/A	N/A

SECTION D - RAW MATERIALS INTRODUCED INTO UNIT OR PROCESS

Include solid fuels such as coke or coal. <i>Exclude</i> indirect heat exchangers from this section For indirect heat exchangers, complete form SFN 8518						
	Hourly Process Weight (Pounds Per Hour)				Intermittent Operation Only	
Material	Average	Maximum	Minimum	Average Annual (Specify Units)	(Average Hours Per Week)	
Condensate	1,198.63	1,198.63	0	10,500,000 gallons	24	

SFN 8520 (9-2021) Page 2

SECTION E – PRODUCTS OF UNIT OR PROCESS

Include all, even those not usable because they do not meet specifications						
	Hourly Process Weight				Intermittent	
	(Pounds Per Hour)			Average Annual	Operation Only (Average Hours	
Material	Average	Maximum	Minimum	(Specify Units)	Per Week)	
Condensate	1,198.63	1,198.63	0	10,500,000 gallons	5	

SECTION F – FUELS USED

Coal (Tons/Yr)	% Sulfur	% Ash	Oil (Gal/Yr)	% Sulfur	Grade No.
N/A	N/A	N/A	N/A		N/A
Natural Gas (Thousand CF/Yr) LP Gas (Gal/Yr)			(Gal/Yr)	Other (S	Specify)
N/A	·	N/A	. ,	N/A	,

SECTION G – EMISSION POINTS

List each point separately, number each and locate on attached flow chart					
Number	Stack Height (ft)	Stack Diameter (ft at top)	Gas Volume (ACFM)	Exit Temp (°F)	Gas Velocity (fps)
1	N/A	N/A	N/A	N/A	N/A

SECTION H – AIR CONTAMINANTS EMITTED

Known or Suspected - Use same identification number as above					
		Amount			
Number	Pollutant	Pounds/Hr	Tons/Yr	Basis of Estimate	
1	VOC	4.57	20.00	Representative Sampling	
1	HAP	0.24	1.06	Representative Sampling	

SECTION I – VOLATILE ORGANIC COMPOUNDS

Are any volatile organic compounds (VOCs) stored on premises? 🗌 No 🔳 Yes – List Below						
See 40 CFR 51.100(s) for classes of compounds covered						
Material Stored	Vapor Control Device					
Condensate	Condensate 16,800					

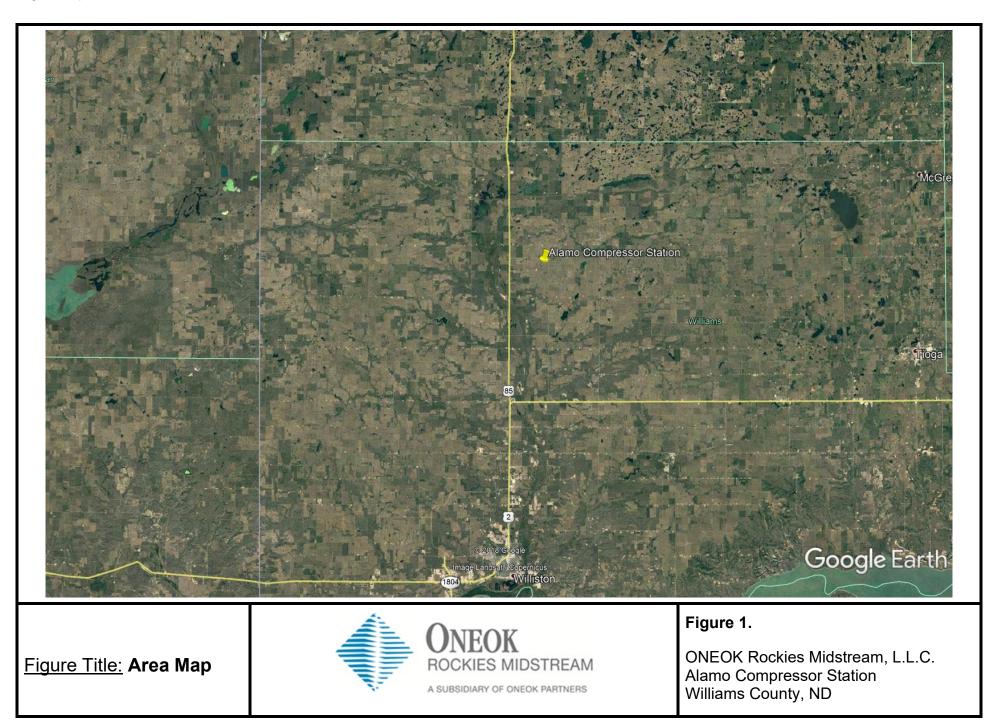
SFN 8520 (9-2021) Page 3

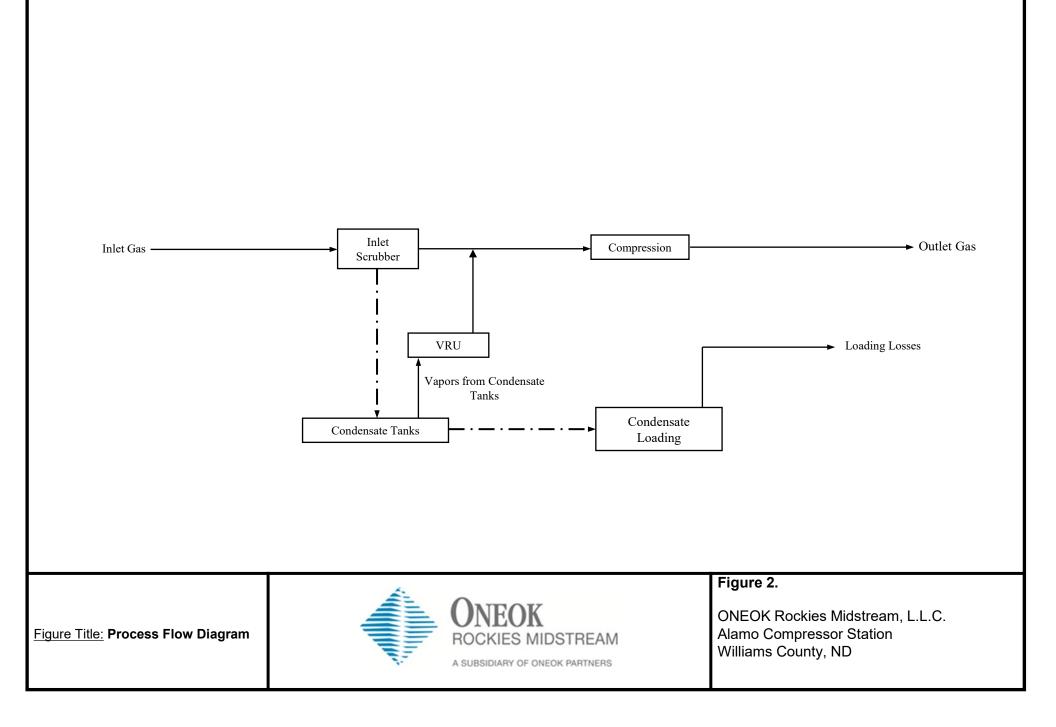
emitting process

SECTION J – ORGANIC SOLVENTS

Are any organic solvents used or produced? IN No (None or less than 50 gal/yr) Yes – List Below						
Туре	Principal Use	Gallons/Yr Consumed	Gallons/Yr Produced			

SECTION K - AIR POLLUTION CONTROL EQUIPMENT


Is any air pollution control equipment installed on this unit or process?	No	🗌 Yes	
If 'Yes' attach form SFN 8532			


SECTION L – MATERIAL STORAGE

Does the input m	aterial or product	from this process of	contain finely divid	ed material which	could become
airborne?	No 🗌 Yes				
Describe storage	methods used:				
j v					
		Particle			
	Type of	Diameter (Avg.	Pile Size		
Storage Piles	Material	or Screen Size)	Average Tons	Pile Wetted	Pile Covered
Ŭ		,	U		
Describe any fug	itive dust problem	S:		I	
Attach additional	sheets if needed	to evolain any ans	wers I lee senarat	e form for each co	ntaminant

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701)328-5188

ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station Facility Emissions Summary - Annual

Unit ID	Description	NOx	со	voc	SO ₂	РМ	нсно	HAP	CO ₂ e
		TPY	TPY	TPY	TPY	TPY	TPY	TPY	TPY
C-1	2,500-hp Waukesha P9394 GSI Series 5	24.09	48.18	16.86	0.05	1.53	1.20	1.67	11,428.19
TK-1	400-bbl Condensate Tank			4.35				0.23	10.66
TK-2	400-bbl Condensate Tank			0.30				0.02	0.00
TK-3	400-bbl Condensate Tank			0.30				0.02	0.00
TK-6	400-bbl Condensate Tank			4.35				0.23	10.66
TK-7	400-bbl Condensate Tank			0.30				0.02	0.00
TK-8	400-bbl Condensate Tank			0.30				0.02	0.00
TL-1	Condensate Truck Loading			20.00				1.06	3.61
FL-1	Emergency Flare	0.13	0.26	0.17	0.24	0.01	<0.01	<0.01	181.33
TK-4	200-bbl Methanol Tank			0.17				0.17	
FUG	Fugitive Emissions			11.82				0.41	398.00
BD	Miscellaneous Venting and Blowdowns to Atmosphere			4.30				0.02	163.99
	Total =	24.22	48.44	63.20	0.28	1.54	1.20	3.86	12,196.44

Note:

Miscellaneous venting and blowdowns to atmosphere include, but are not limited to, miscellaneous planned and unplanned venting to atmosphere from pressure relief valves, startup, shut-down, maintenance, compressor blowdowns, pigging actions, and/or pneumatic controllers.

ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station Facility Emissions Summary - Hourly

Unit ID	Description	NOx	со	voc	SO ₂	РМ	нсно	HAP	CO ₂ e
	·	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
C-1	2,500-hp Waukesha P9394 GSI Series 5	5.50	11.00	3.85	0.01	0.35	0.28	0.38	2,609.18
TK-1	400-bbl Condensate Tank			0.99				0.05	2.43
TK-2	400-bbl Condensate Tank			0.07				<0.01	0.00
TK-3	400-bbl Condensate Tank			0.07				<0.01	0.00
TK-6	400-bbl Condensate Tank			0.99				0.05	2.43
TK-7	400-bbl Condensate Tank			0.07				<0.01	0.00
TK-8	400-bbl Condensate Tank			0.07				<0.01	0.00
TL-1	Condensate Truck Loading			4.57				0.24	0.82
FL-1	Emergency Flare	0.18	0.75	0.65	0.94	<0.01	<0.01	<0.01	328.36
TK-4	200-bbl Methanol Tank								
FUG	Fugitive Emissions			2.70				0.09	90.87
BD	Miscellaneous Venting and Blowdowns to Atmosphere								
	Total =	5.68	11.75	14.02	0.95	0.35	0.28	0.84	3,034.09

Note:

1) Hourly emissions from tanks and flares are estimates based on average values.

ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station Facility Analyses

			Stre	am 1			Stre	am 2			Stre	am 3	
Component	Molecular		Inle	t Gas			Cond	ensate			Flasl	n Gas	
Component	Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %
Hydrogen Sulfide	34.081	0.3000%	0.10	0.43%	-	0.0000%	0.00	0.00%	-	0.0000%	0.00	0.00%	-
Carbon Dioxide	44.010	0.7310%	0.32	1.34%	-	0.0085%	0.00	0.00%	-	0.5290%	0.23	0.57%	-
Nitrogen	28.013	2.0350%	0.57	2.38%	-	0.0016%	0.00	0.00%	-	1.0700%	0.30	0.73%	-
Helium	4.003	0.0000%	0.00	0.00%	-	0.0000%	0.00	0.00%	-	0.0000%	0.00	0.00%	-
Oxygen	31.999	0.0000%	0.00	0.00%	-	0.0000%	0.00	0.00%	-	0.0000%	0.00	0.00%	-
Methane	16.043	61.9740%	9.94	41.46%	43.26%	0.1040%	0.02	0.02%	0.02%	19.6000%	3.14	7.67%	7.77%
Ethane	30.069	21.6850%	6.52	27.19%	28.37%	0.9600%	0.29	0.32%	0.32%	24.9000%	7.49	18.26%	18.50%
Propane	44.096	9.4690%	4.18	17.41%	18.17%	3.7900%	1.67	1.85%	1.85%	26.0000%	11.46	27.96%	28.32%
i-Butane	58.122	0.8550%	0.50	2.07%	2.16%	1.4300%	0.83	0.92%	0.92%	3.5400%	2.06	5.02%	5.08%
n-Butane	58.122	2.1890%	1.27	5.31%	5.54%	7.9500%	4.62	5.11%	5.11%	12.9000%	7.50	18.28%	18.52%
i-Pentane	72.149	0.2650%	0.19	0.80%	0.83%	5.2500%	3.79	4.19%	4.19%	3.2300%	2.33	5.68%	5.76%
n-Pentane	72.149	0.3370%	0.24	1.01%	1.06%	11.2000%	8.08	8.93%	8.93%	4.9500%	3.57	8.71%	8.82%
n-Hexane	86.175	0.0240%	0.02	0.09%	0.09%	19.4000%	16.72	18.48%	18.48%	2.2100%	1.90	4.64%	4.71%
Other Hexanes	86.175	0.1022%	0.09	0.37%	0.38%	0.0000%	0.00	0.00%	0.00%	0.0000%	0.00	0.00%	0.00%
Heptanes	100.202	0.0110%	0.01	0.05%	0.05%	23.1000%	23.15	25.59%	25.59%	0.7540%	0.76	1.84%	1.87%
Benzene	78.114	0.0053%	0.00	0.02%	0.02%	0.6450%	0.50	0.56%	0.56%	0.0756%	0.06	0.14%	0.15%
Toluene	92.141	0.0046%	0.00	0.02%	0.02%	0.9990%	0.92	1.02%	1.02%	0.0300%	0.03	0.07%	0.07%
Ethylbenzene	106.167	0.0002%	0.00	0.00%	0.00%	0.5110%	0.54	0.60%	0.60%	0.0045%	0.00	0.01%	0.01%
Xylenes	106.167	0.0012%	0.00	0.01%	0.01%	0.6780%	0.72	0.80%	0.80%	0.0046%	0.00	0.01%	0.01%
Octanes	114.229	0.0077%	0.01	0.04%	0.04%	14.9000%	17.02	18.81%	18.82%	0.1360%	0.16	0.38%	0.38%
2,2,4-Trimethylpentane	114.231	0.0043%	0.00	0.02%	0.02%	2.8605%	3.27	3.61%	3.61%	0.0000%	0.00	0.00%	0.00%
Nonanes	128.255	0.0000%	0.00	0.00%	0.00%	3.6800%	4.72	5.22%	5.22%	0.0094%	0.01	0.03%	0.03%
Decanes	142.282	0.0000%	0.00	0.00%	0.00%	2.5324%	3.60	3.98%	3.98%	0.0000%	0.00	0.00%	0.00%
	Totals =	100.0005%	23.98	100.00%	100.00%	100.0000%	90.46	100.00%	100.00%	99.9431%	41.01	100.00%	100.00%
		Total HC =	22.98	Total VOC =	28.38%	Total HC =	90.46	Total VOC =	99.66%	Total HC =	40.48	Total VOC =	73.73%
				Total HAP =	0.15%			Total HAP =	25.06%			Total HAP =	4.94%

Notes:

1) Representative gas analysis. Condensate and flash gas compositions calculated with ProMax process simulation.

Equipment In	formation						
	TK-1 - TK-3	TK-6 - TK-8					
Contents	Condensate	Condensate					
Number of Tanks	3	3					
Capacity (bbl)	400	400					
Capacity (gal)	16,800	16,800					
Total Throughput (bbl/yr)	125,000	125,000					
Total Throughput (gal/yr)	5,250,000	5,250,000					
Total Throughput (bbl/d)	342	342					
Per Tank Throughput (bbl/yr) ¹	125,000	125,000					
Per Tank Throughput (gal/yr) ¹	5,250,000	5,250,000					
Per Tank Throughput (bbl/d)	342	342					
VOC Tank Working Emission Factor (lb VOC/bbl) ²	0.07	0.07					
VOC Tank Breathing Losses (lb/yr) ²	3,738.00	3,738.00					
Flash Calculation Method	Process Simulation	Process Simulation					
VOC Tank Flashing Emission Factor (lb VOC/bbl) ²	Capacity (gal) 16,800 pughput (bbl/yr) 125,000 pughput (gal/yr) 5,250,000 pughput (bbl/d) 342 ughput (bbl/yr) ¹ 125,000 pughput (bbl/yr) ¹ 125,000 ughput (bbl/yr) ¹ 5,250,000 pughput (bbl/yr) ¹ 5,250,000 pughput (gal/yr) ¹ 5,250,000 pughput (bbl/d) 342 por (lb VOC/bbl) ² 0.07 Losses (lb/yr) ² 3,738.00 ulation Method Process Simulation por (lb VOC/bbl) ² 1.296 or (lb CO ₂ /bbl) ² 0.010 por (lb CH ₄ /bbl) ² 0.136 Control Type Vapor Recovery Unit						
CO ₂ Tank Flashing Emission Factor (lb CO ₂ /bbl) ²	0.010	0.010					
CH₄ Tank Flashing Emission Factor (lb CH₄/bbl) ²	0.136	0.136					
Control Type	Init Throughput (gal/yr) $5,250,000$ Tank Throughput (bbl/d) 342 Sion Factor (lb VOC/bbl) 0.07 Treathing Losses (lb/yr) $3,738.00$ Tash Calculation MethodProcess SimulationProcess SimulationPSion Factor (lb VOC/bbl) 1.296 Sion Factor (lb CO2/bbl) 0.010 Sion Factor (lb CH4/bbl) 0.136 Control TypeVapor Recovery Unit						
Capture/Control Efficiency ³	95%	95%					

ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station Tank Information

Notes:

1) The six tanks are connected in two series of three tanks; therefore, half of station total condensate throughput flows through each tank in each series and only flashes at the inlet to the first tank in each series (TK-1 and TK-6).

2) Working and breathing calculated using EPA TANKS 4.0.9d. Flashing calculated with site specific ProMax process simulation. See attached reports and following tables.

3) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-1

Uncontrolled Emissions

Pollutant	Working	g Losses		Breathin	g Losses		Flashing	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions ¹
VOC ²	4.08	TPY	+	1.87	TPY	+	81.00	TPY	=	86.95	TPY	/	8,760	Х	2,000	lb/ton	=	19.85	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	1.30	TPY	=	1.39	TPY	/	8,760	Х	2,000	lb/ton	=	0.32	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.73	TPY	=	0.78	TPY	/	8,760	Х	2,000	lb/ton	=	0.18	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	1.05	TPY	=	1.13	TPY	/	8,760	Х	2,000	lb/ton	=	0.26	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.08	TPY	=	0.09	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.41	TPY	=	0.43	TPY	/	8,760	Х	2,000	lb/ton	=	0.10	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.73	TPY	=	0.78	TPY	/	8,760	Х	2,000	lb/ton	=	0.18	lb/hr
CO23	-	TPY	+	-	TPY	+	0.63	TPY	=	0.63	TPY	/	8,760	Х	2,000	lb/ton	=	0.14	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	8.50	TPY	=	8.50	TPY	/	8,760	х	2,000	lb/ton	=	1.94	lb/hr

Controlled Emissions⁴

Pollutant	Working	J Losses		Breathin	g Losses		Flashing	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	4.05	TPY	=	4.35	TPY	/	8,760	Х	2,000	lb/ton	=	0.99	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.06	TPY	=	0.07	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.04	TPY	=	0.04	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.05	TPY	=	0.06	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	<0.01	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.02	TPY	=	0.02	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.04	TPY	=	0.04	TPY	/	8,760	Х	2000	lb/ton	=	0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.03	TPY	=	0.03	TPY	/	8,760	Х	2000	lb/ton	=	0.01	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.43	TPY	=	0.43	TPY	/	8,760	Х	2000	lb/ton	=	0.10	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

2) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

3) Per API Chapter 5: CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing; working and breathing loss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-2

Uncontrolled Emissions

Pollutant	Working	l Losses		Breathin	g Losses		Flashing	Losses ¹		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly Er	missions ²
VOC ³	4.08	TPY	+	1.87	TPY	+	0.00	TPY	=	5.95	TPY	/	8,760	Х	2,000	lb/ton	=	1.36	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	0.00	TPY	=	0.10	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	0.00	TPY	=	0.08	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.00	TPY	=	0.03	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
CO23	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr

Controlled Emissions⁴

Pollutant	Working	l Losses		Breathin	g Losses		Flashin	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	0.00	TPY	=	0.30	TPY	/	8,760	Х	2,000	lb/ton	=	0.07	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2000	lb/ton	=	<0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Tanks are connected in series; therefore, station total condensate throughput flows through each tank and only flashes at the inlet to the first tank.

2) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

3) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-3

Uncontrolled Emissions

Pollutant	Working	l Losses		Breathin	g Losses		Flashing	Losses ¹		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly Er	missions ²
VOC ³	4.08	TPY	+	1.87	TPY	+	0.00	TPY	=	5.95	TPY	/	8,760	Х	2,000	lb/ton	=	1.36	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	0.00	TPY	=	0.10	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	0.00	TPY	=	0.08	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.00	TPY	=	0.03	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
CO23	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr

Controlled Emissions⁴

Pollutant	Working	l Losses		Breathin	g Losses		Flashin	g Losses		Annual E	missions	Ор	erating Ho	ours	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	0.00	TPY	=	0.30	TPY	/	8,760	Х	2,000	lb/ton	=	0.07	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2000	lb/ton	=	<0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Tanks are connected in series; therefore, station total condensate throughput flows through each tank and only flashes at the inlet to the first tank.

2) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

3) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-6

Uncontrolled Emissions

Pollutant	Working	g Losses		Breathin	g Losses		Flashing	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions ¹
VOC ²	4.08	TPY	+	1.87	TPY	+	81.00	TPY	=	86.95	TPY	/	8,760	Х	2,000	lb/ton	=	19.85	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	1.30	TPY	=	1.39	TPY	/	8,760	Х	2,000	lb/ton	=	0.32	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.73	TPY	=	0.78	TPY	/	8,760	Х	2,000	lb/ton	=	0.18	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	1.05	TPY	=	1.13	TPY	/	8,760	Х	2,000	lb/ton	=	0.26	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.08	TPY	=	0.09	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.41	TPY	=	0.43	TPY	/	8,760	Х	2,000	lb/ton	=	0.10	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.73	TPY	=	0.78	TPY	/	8,760	Х	2,000	lb/ton	=	0.18	lb/hr
CO23	-	TPY	+	-	TPY	+	0.63	TPY	=	0.63	TPY	/	8,760	Х	2,000	lb/ton	=	0.14	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	8.50	TPY	=	8.50	TPY	/	8,760	х	2,000	lb/ton	=	1.94	lb/hr

Controlled Emissions⁴

Pollutant	Working	J Losses		Breathin	g Losses		Flashing	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	4.05	TPY	=	4.35	TPY	/	8,760	Х	2,000	lb/ton	=	0.99	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.06	TPY	=	0.07	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.04	TPY	=	0.04	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.05	TPY	=	0.06	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	<0.01	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.02	TPY	=	0.02	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.04	TPY	=	0.04	TPY	/	8,760	Х	2000	lb/ton	=	0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.03	TPY	=	0.03	TPY	/	8,760	Х	2000	lb/ton	=	0.01	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.43	TPY	=	0.43	TPY	/	8,760	Х	2000	lb/ton	=	0.10	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

2) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

3) Per API Chapter 5: CH₄ and CO₂ emissions from crude storage tanks occur mainly as a result of flashing; working and breathing loss emissions of these gases are very small in production and virtually non-existent in downstream segments. Unless site-specific data indicate otherwise, working and breathing losses are presumed to contain no CH₄ or CO₂.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-7

Uncontrolled Emissions

Pollutant	Working	l Losses		Breathin	g Losses		Flashing	Losses ¹		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly Er	missions ²
VOC ³	4.08	TPY	+	1.87	TPY	+	0.00	TPY	=	5.95	TPY	/	8,760	Х	2,000	lb/ton	=	1.36	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	0.00	TPY	=	0.10	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	0.00	TPY	=	0.08	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.00	TPY	=	0.03	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
CO23	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr

Controlled Emissions⁴

Pollutant	Working	l Losses		Breathin	g Losses		Flashin	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	0.00	TPY	=	0.30	TPY	/	8,760	Х	2,000	lb/ton	=	0.07	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2000	lb/ton	=	<0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Tanks are connected in series; therefore, station total condensate throughput flows through each tank and only flashes at the inlet to the first tank.

2) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

3) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

Unit ID: TK-8

Uncontrolled Emissions

Pollutant	Working	l Losses		Breathin	g Losses		Flashing	J Losses ¹		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions ²
VOC ³	4.08	TPY	+	1.87	TPY	+	0.00	TPY	=	5.95	TPY	/	8,760	Х	2,000	lb/ton	=	1.36	lb/hr
n-Hexane	0.07	TPY	+	0.03	TPY	+	0.00	TPY	=	0.10	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Benzene	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Toluene	0.05	TPY	+	0.02	TPY	+	0.00	TPY	=	0.08	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	0.02	TPY	+	0.01	TPY	+	0.00	TPY	=	0.03	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
Other HAP	0.04	TPY	+	0.02	TPY	+	0.00	TPY	=	0.05	TPY	/	8,760	Х	2,000	lb/ton	=	0.01	lb/hr
CO23	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr
CH ₄ ³	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2,000	lb/ton	=	0.00	lb/hr

Controlled Emissions⁴

Pollutant	Working	J Losses		Breathin	g Losses		Flashin	g Losses		Annual E	missions	Ор	erating Ho	urs	Conv	ersion		Hourly E	missions
VOC	0.20	TPY	+	0.09	TPY	+	0.00	TPY	=	0.30	TPY	/	8,760	Х	2,000	lb/ton	=	0.07	lb/hr
n-Hexane	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Benzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Toluene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Ethylbenzene	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Xylenes	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr
Other HAP	<0.01	TPY	+	<0.01	TPY	+	0.00	TPY	=	<0.01	TPY	/	8,760	Х	2000	lb/ton	=	<0.01	lb/hr
CO ₂	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr
CH₄	-	TPY	+	-	TPY	+	0.00	TPY	=	0.00	TPY	/	8,760	Х	2000	lb/ton	=	0.00	lb/hr

Estimated HAP Composition (% by Weight)⁵

Pollutant	Wt%
n-Hexane	1.600%
Benzene	0.900%
Toluene	1.300%
Ethylbenzene	0.100%
Xylenes	0.500%
Other HAP	0.900%
Total HAP =	5.300%

Notes:

1) Tanks are connected in series; therefore, station total condensate throughput flows through each tank and only flashes at the inlet to the first tank.

2) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

3) VOC TPY working and breathing losses calculated from lb/yr TANKS 4.0.9d results as follows: lb/yr * 1/2000 = TPY. VOC, CO₂ and CH₄ TPY flashing losses calculated with ProMax flash emission factor as follows: lb/bbl factor * annual bbl throughput * 1/2000 = TPY.

4) Capture/control efficiency is based on the VRU controlling 100% of captured vapors when operating, plus 5% downtime.

ONEOK Rockies Midstream, L.L.C. Alamo Compressor Station Truck Loading Information

Equipment Information									
	TL-1								
Contents Loaded	Condensate								
Fill Method	Submerged								
Type of Service	Dedicated								
Mode of Operation	Normal								
Saturation Factor	0.6								
Throughput (1000 gal/yr)	10,500								
Throughput (10 ⁶ gal/yr)	10.500								
Maximum Loading Rate (gal/hr)	7,500								
VOC Emission Factor (lb/bbl)	0.16								
ProMax Flash Gas CH₄ wt%	7.768%								
ProMax Flash Gas CO ₂ wt%	0.568%								
Control Type	None								

Notes:

1) Properties based on EPA TANKS 4.0.9d for conservative ONEOK composition.

2) AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T.

3) API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12. Emission factor converted as follows: tonne/10⁶ gal * 1.10231131 ton/tonne.

Unit ID: TL-1

Uncontrolled Emissions

Pollutant	Emiss	ion Factor	Throughput				Conversion			Annual Emissions			Operating Hours			Conversion		Average Hourly Emissions ¹		
VOC	0.16	lb/bbl	Х	250,000	bbl/yr	Х	0.0005	ton/lb	=	20.00	TPY	/	8,760	Х	2,000	lb/ton	=	4.57	lb/hr	
n-Hexane	-	-	-	-	-	-	-	-	=	0.32	TPY	/	8,760	Х	2,000	lb/ton	=	0.07	lb/hr	
Benzene	-	-	-	-	-	-	-	-	=	0.18	TPY	/	8,760	Х	2,000	lb/ton	=	0.04	lb/hr	
Toluene	-	-	-	-	-	-	-	-	=	0.26	TPY	/	8,760	Х	2,000	lb/ton	=	0.06	lb/hr	
Ethylbenzene	-	-	-	-	-	-	-	-	=	0.02	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr	
Xylenes	-	-	-	-	-	-	-	-	=	0.10	TPY	/	8,760	Х	2,000	lb/ton	=	0.02	lb/hr	
Other HAP	-	-	-	-	-	-	-	-	=	0.18	TPY	/	8,760	Х	2,000	lb/ton	=	0.04	lb/hr	
CO ₂	0.18	ton/10 ⁶ gal	Х	10.500	10 ⁶ gal/yr	Х	0.568%	Wt%	=	0.01	TPY	/	8,760	Х	2,000	lb/ton	=	<0.01	lb/hr	
CH₄	0.18	ton/10 ⁶ gal	Х	10.500	10 ⁶ gal/yr	Х	7.768%	Wt%	=	0.14	TPY	/	8,760	Х	2,000	lb/ton	=	0.03	lb/hr	

Estimated HAP Composition (% by Weight)²

Pollutant	Wt%					
n-Hexane	1.600%					
Benzene	0.900%					
Toluene	1.300%					
Ethylbenzene	0.100%					
Xylenes	0.500%					
Other HAP	0.900%					
Total HAP =	5.300%					

Notes:

Due to variable short-term emission rates, average lb/hr rate shown for reference only.
 Table 11.3-2, "HAP Percent of VOC Emissions," Gasoline Marketing (Stage I and Stage II), EPA Document Revised Final 1/2001.