

Nesson Gathering System, LLC

22777 Springwoods Village Parkway
Spring, TX 77389

August 8, 2025

North Dakota Department of Environmental Quality
Division of Air Quality
918 E. Divide Ave. – 2nd Floor
Bismarck, ND 58501

RE: Flickertail Compressor Station – Williams County, ND
Nesson Gathering System, LLC

Air Quality Division:

Nesson Gathering System, LLC (Nesson) is submitting an updated application to modify the existing permit for the Flickertail Compressor Station in Williams County. Engine emission factors for eight (8) 3608 TALE compressor engines are being updated. The fuel membrane skid burner rating is being corrected to 2.5 MMBTU/HR burner,

If you have any questions or require additional information to process this application, please contact Tammy Wallace at 346-502-7988 or by email at tammy.h.wallace@exxonmobil.com.

Sincerely,

Tammy H. Wallace

Tammy H. Wallace
Environmental and Regulatory Advisor
XTO Energy Inc. (Subsidiary of Exxonmobil)

**NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
WILLIAMS COUNTY, NORTH DAKOTA**

**PREPARED BY:
TAMMY WALLACE
ENVIRONMENTAL AND REGULATORY ADVISOR
XTO ENERGY INC.**

8/6/2025

Table of Attachments

Attachment # 1	Project Description & Flow Diagram
Attachment # 2	Facility Application Fee
Attachment # 3	Application Forms
Attachment # 4	Applicability Determinations
Attachment # 5	Facility Emission Summary Table
Attachment # 6	Component Analyses
Attachment # 7	Emission Calculation Methodologies
Attachment # 8	Emission Calculations
Attachment # 9	Air Dispersion Modeling
Attachment # 10	Supporting Documentation

Attachment # 1
Project Description & Flow Diagram

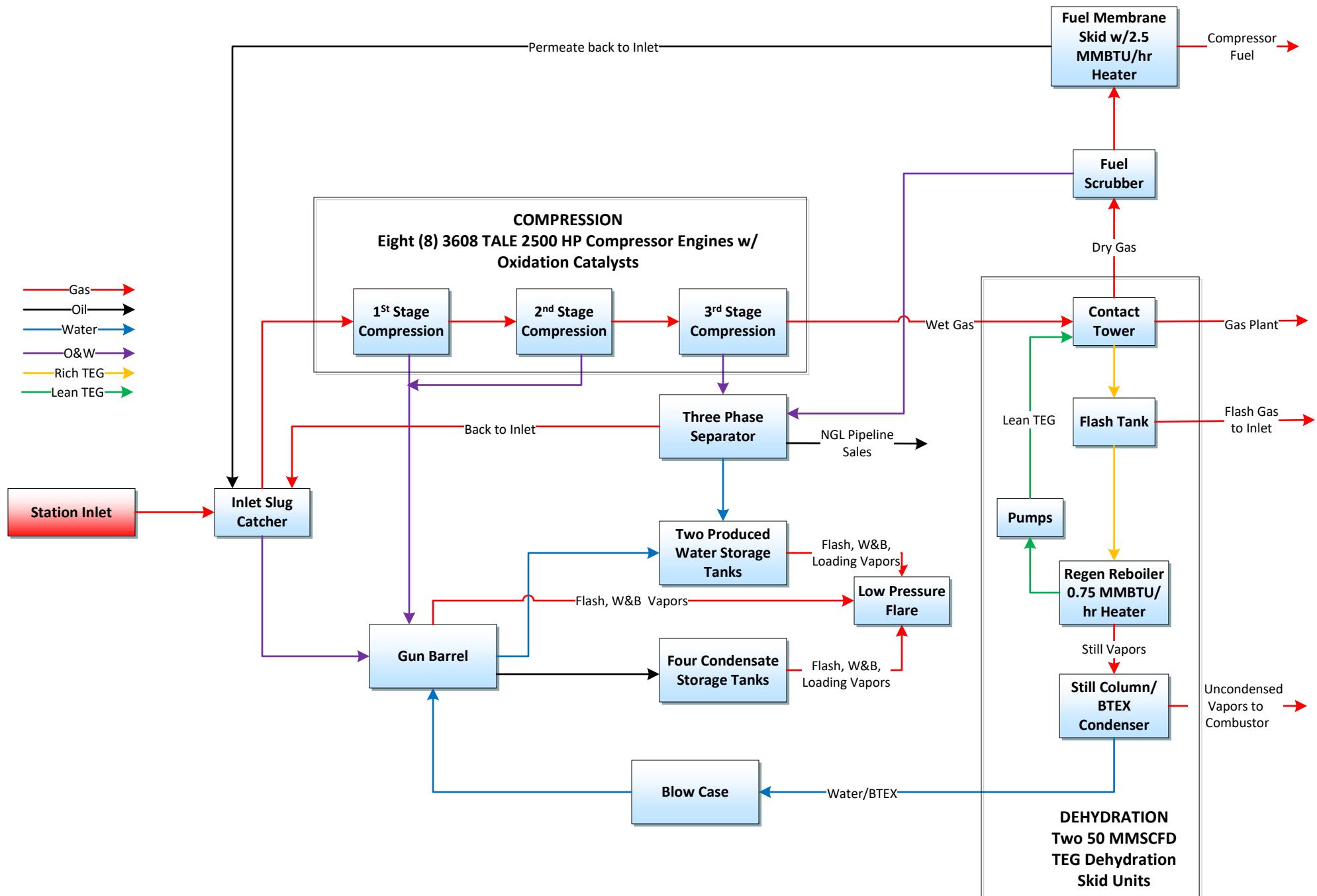
PROJECT DESCRIPTION
FLICKERTAIL COMPRESSOR STATION – MODIFICATION

Nesson Gathering System, LLC (Nesson) is submitting an permit to construct application to modify the Flickertail Compressor Station in Williams County. The compressor station receives up to 100 MMSCFD and compresses and dehydrates natural gas collected from surrounding production facilities. The compressor station will includes two 50 MMSCFD dehydration units each with a 0.75 MMBTU/hr reboiler burner and BTEX condenser, a fuel membrane skid containing a 2.5 MMBTU/hr burner, a combustor for dehy emissions, a combustor for tank/loading emissions, an emergency flare and eight (8) 3608 TALE compressor engines. Each of the compressor engines located at the facility is equipped with oxidation catalysts to meet the requested permit limits specified in the enclosed application. Additionally, the compressor station has tanks at atmospheric pressure including a 500-bbl gun barrel, four 400-bbl condensate storage tanks and two 400-bbl produced water storage tanks. All tank vapors are controlled by a combustor.

Under the guidance documents published on October 6, 2014 and January 23, 2015, air dispersion modeling is required at this facility due to the stack heights of the compressor engines. The results of the air dispersion modeling are included in Attachment 9.

Enclosed is a process flow diagram, emission calculations, and other supporting documentation.

TITLE V APPLICABILITY
ROUGHRIDER COMPRESSOR STATION – NEW APPLICATION


The facility is not a Title V facility. The facility does not have the potential to emit more than 100 TPY of NOx, CO, or VOCs, 10 TPY of any Hazardous Air Pollutants (HAPs) or 25 TPY of total combined HAPs.

PSD APPLICABILITY
ROUGHRIDER COMPRESSOR STATION – NEW APPLICATION

The facility is not be a PSD facility because the facility does not have the potential to emit more than 250 TPY of NOx, CO, or VOCs, 10 TPY of any Hazardous Air Pollutants (HAPs) or 25 TPY of total combined HAPs.

Flickertail Compressor Station

April 2025

Attachment # 2
Facility Application Fee

Fee Paid Online

Attachment # 3
Application Forms

Attachment # 4
Applicability Determinations
Forms Uploaded in CERIS

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Federal Regulations: Applicability Determinations

Applicability Determinations

NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP): MACT STANDARDS

40 CFR 63 Subpart HH	This facility is a minor source for HAPs emissions. Individual HAPs are less than 10 TPY & Total Combined HAPs are less than 25 TPY. The dehydration units processes more than 3 MMSCFD, but the Benzene emissions are less than 1 TPY. Title 40 CFR Part 63, entitled National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Source Categories, is incorporated into the North Dakota rules at NDAC 33.1-15-22.01. Only the requirements that are applicable to major sources of hazardous air pollutants are adopted from 40 CFR Part 63 Subpart HH and ZZZZ. The facility is not a major source of hazardous air pollutants therefore, the facility is not an affected facility under Section 33.1-15-22-03 and is not subject to this regulation.
40 CFR 63 Subpart ZZZZ	This facility is a minor source for HAPs emissions. Individual HAPs are less than 10 TPY & Total Combined HAPs are less than 25 TPY. The dehydration units processes more than 3 MMSCFD, but the Benzene emissions are less than 1 TPY. Title 40 CFR Part 63, entitled National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Source Categories, is incorporated into the North Dakota rules at NDAC 33.1-15-22.01. Only the requirements that are applicable to major sources of hazardous air pollutants are adopted from 40 CFR Part 63 Subpart HH and ZZZZ. The facility is not a major source of hazardous air pollutants therefore, the facility is not an affected facility under Section 33.1-15-22-03 and is not subject to this regulation.
40 CFR 63 Subpart DDDDD	N/A - This regulation is not applicable to this facility because the facility does not have the potential to emit more than 25 tons per year or more of any combination of hazardous air pollutants.

NEW SOURCE PERFORMANCE STANDARDS (NSPS)

40 CFR 60 Subpart Ka/Kb	N/A - This facility does not contain any storage vessels for petroleum liquids with a capacity of ≥ 75 m ³ for which construction, reconstruction, or modification commenced after July 23, 1984, and is not subject to this regulation
40 CFR 60 Subpart KKK	N/A - This facility is not a natural gas processing plant and is not subject to this regulation.
40 CFR 60 Subpart LLL	N/A - This facility is not a natural gas processing plant and is not subject to this regulation.
40 CFR 60 Subpart JJJJ	Eight (8) Compressor engines at the facility will be constructed after the applicable date for NSPS JJJJ and are therefore subject to the requirements of this regulation.
40 CFR 60 Subpart IIII	N/A - There are no compression-ignition internal combustion engines located at this facility that are subject to this regulation.
40 CFR 60 Subpart GG or KKKK	N/A - There are no stationary combustion turbines with a peak load equal to or greater than 10 MMBtu/hr located at this facility that are subject to this regulation
40 CFR 60 Subpart OOOO & OOOOa (Storage Tanks & Compressors)	This Facility was constructed after September 18, 2015 and therefore will be subject to LDAR provisions of NSPS OOOOa.

MANDATORY GREENHOUSE GAS REPORTING

40 CFR 98 Subpart C	The facility is subject to this regulation and will comply by complying with the requirements of 40 CFR 98, Subpart W.
40 CFR 98 Subpart W	The facility is an affected source that is subject to this regulation because it contains onshore petroleum and natural gas production sources subject to reporting under Subpart W.

EPA RISK MANAGEMENT PLAN

40 CFR 68 Subpart G	N/A - This facility does not store more than 10,000 pounds of a regulated material, thus it is not subject to the provisions of the EPA RMP Requirements.
---------------------	---

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
State Regulations: Applicability Determinations

POTENTIALLY APPLICABLE NORTH DAKOTA REGULATIONS

Applicability Determinations

NDAC 33.1-15-01 - General Provisions	This facility is subject to general requirements of this section (i.e., inspection, circumvention, shutdown/malfunction, compliance, enforcement, confidentiality of records, etc.).
NDAC 33.1-15-02 - Ambient Air Quality Standards	The air quality of the area is classified as "Better than National Standards" or unclassifiable/attainment of the National Ambient Air Quality Standards (NAAQS) for criteria pollutants (40 CFR 81.327). There are no nonattainment areas within a reasonable distance of the site. Nesson will comply with the requirements of this chapter.
NDAC 33.1-15-03 - Restriction of Emission of Visible Air Contaminants	NDAC 33-15-03 contains regulations governing particulate matter and opacity limits from new and existing sources. Nesson will comply with all applicable standards.
NDAC 33.1-15-04 - Open Burning Restrictions	Nesson will comply with all open burning regulations at the facility.
NDAC 33.1-15-05 - Emissions of Particulate Matter Restricted	This facility operates three natural gas-fired stationary combustion units; however, they do not have an aggregate heat input of greater than ten million Btu/hr and are exempt from this regulation [NDAC 33.1-15-05-02.2(e)].
NDAC 33.1-15-06 - Emissions of Sulfur Compounds Restricted	This facility does not combust pipeline quality natural gas and will comply with the sulfur dioxide emissions limit of 3 lb/MMBtu heat input of this chapter.
NDAC 33.1-15-07 - Control of Organic Compounds Emissions	There is submerged fill loading, a low pressure flare and a combustor for the TEG dehy units at this facility. Nesson will comply with the applicable provisions of Sections 33.1-15-07-01 and 33.1-15-07-02, respectively.
NDAC 33.1-15-08 - Control of Air Pollution From Vehicles and Other Internal Combustion Engines	Nesson will comply with all requirements of this regulation at the facility.
NDAC 33.1-15-11 - Prevention of Air Pollution Emergency Episodes	Nesson will comply with any applicable source curtailment regulations when notified by the Department of an Air Pollution Emergency Episode.
NDAC 33.1-15-12 - Standards of Performance for New Stationary Sources	The facility qualifies as a designated source for NSPS per Subpart OOOOa and Subpart JJJJ of 40 CFR 60. Subpart OOOOa has yet to be incorporated by reference in NDAC Section 33.1-15-12-01.1 and remains administered by EPA Region 8.
NDAC 33.1-15-13 - Emissions Standards for Hazardous Air Pollutants	The process fluids at this facility (field gas or tank vapors) are not greater than 10% Volatile Hazardous Air Pollutant (VHAP) as defined by §61.241 of 40 CFR 61; therefore, this facility is not subject to Subpart J or Subpart V, as incorporated by Section 33.1-15-13-01.1.
NDAC 33.1-15-14 -Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate	The facility does not have the potential to emit more than 100 tons per year of a criteria pollutant and the facility is a minor source for HAPs emissions. Individual HAPs are less than 10 TPY & Total Combined HAPs are less than 25 TPY. Therefore, the facility is not subject to the operating permit program per NDAC 33.1-15-14-06. Nesson will comply with the requirements of NDAC 33.1-15-14-02.
NDAC 33.1-15-15 - Prevention of Significant Deterioration of Air Quality	The facility does not have the potential to emit greater than 250 tons per year of any regulated pollutant and is not a new facility with greater than 100,000 tons per year of carbon dioxide equivalent emissions, therefore PSD is not applicable.
NDAC 33.1-15-16 - Restriction of Odorous Air Contaminants	Nesson will comply with all requirements concerning odorous air contaminants at the facility as it applies to sources outside a city or outside the area over which a city has exercised extraterritorial zoning as defined in North Dakota Century Code Section 40-47-01.1

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
State Regulations: Applicability Determinations

POTENTIALLY APPLICABLE NORTH DAKOTA REGULATIONS

Applicability Determinations

NDAC 33.1-15-17 - Restriction of Fugitive Emissions	Nesson will comply with all requirements for taking reasonable precautions to prevent fugitive emissions from causing air pollution as defined in NDAC 33.1-15-01-04.
NDAC 33.1-15-18 - Stack Heights	Air dispersion modeling is required for this facility. The potential to emit for NOx is less than 100 tpy however the engine stack heights will not be at least 1.5 times the building height. Refer to Attachment 9 for the air dispersion modeling results.
NDAC 33.1-15-19 - Visibility Protection	The facility is not a major stationary source as defined by Section 33.1-15-15-01; therefore, these regulations do not apply per Section 33.1-15-19-01.
NDAC 33.1-15-20 - Control of Emissions from Oil and Gas Well Production Facilities	The facility is not a "production facility" because an oil or gas well is not located at the facility or more contiguous or adjacent surface properties; therefore, these regulations do not apply
NDAC 33.1-15-21 - Acid Rain Program	This facility is not a listed source per 40 CFR 72 and 73, as incorporated by Section 33-15-21-08.1; therefore, these rules do not apply.
NDAC 33.1-15-22 - Emissions Standards for Hazardous Air Pollutants for Source Categories	Title 40 CFR Part 63, entitled National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Source Categories, is incorporated into the North Dakota rules at NDAC 33.1-15-22-01. The facility is not a major source of hazardous air pollutants therefore 40 CFR Part 63 Subpart HH and ZZZZ do not apply under Section 33.1-15-22-03 and the facility is not subject to this regulation.
NDAC 33.1-15-23 - Fees	Nesson will pay the required annual operating fees based on the specifications in Section 33.1-15-23-04.
NDAC 33.1-15-24 - Standards for Lead-Base Paint Activities	This facility is not involved in lead-based paint activities as defined in 40 CFR 745 Subpart 745.223 as incorporated in NDAC 33.1-15-24-01; therefore, the requirements of this chapter do not apply.
NDAC 33.1-15-25 - Regional Haze Requirements	The facility is not an existing stationary facility as defined in 40 CFR 51.301; therefore, the requirements of this chapter do not apply.

DISPERSION MODELING REQUIREMENTS

DISPERSION MODELING REQUIREMENTS: COMPRESSOR ENGINEERS & GLYCOL DEHYDRATION UNITS & CRITERIA POLLUTANT MODELING REQUIREMENTS FOR A PTC	<p>Under the guidance documents published on October 6, 2014 and January 23, 2015, dispersion modeling is required at this facility due to the stack heights of the compressor engines. However the following criteria are satisfied at this facility:</p> <ol style="list-style-type: none"> 1. Emissions from all compressor engines at the facility will be controlled with catalytic emission control systems which is designed to reduce non-methane hydrocarbon emissions by at least 50%. 2. Emissions from all glycol dehy units at the facility are controlled by a control device with a VOC destruction and removal efficiency of at least 90% (BTEX condenser est 80% efficiency and combustion device with 98% VOC DRE). 3. The facility is greater than 1/4 mile from a residence. 4. The facility has the potential to emit less than 100 tpy in NOx, 100 tpy in SO₂, 40 tpy in PM₁₀ and 25 tpy in PM_{2.5}.
---	---

Attachment # 5
Facility Emission Summary Table

NESSON GATHERING SYSTEM, LLC

FLICKERTAIL COMPRESSOR STATION

FACILITY EMISSION SUMMARY

EMISSION SUMMARY TABLE*

EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION NUMBER (FIN)	EMISSION POINT NUMBER (EPN)	NOx		CO		VOC (INCLUDES HAPs)		SO ₂		PM _{10 & 2.5}		HCHO		HAPs	
			lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG1	ENG1	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG2	ENG2	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG3	ENG3	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG4	ENG4	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG5	ENG5	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG6	ENG6	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG7	ENG7	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG8	ENG8	2.20	9.66	2.43	10.62	2.31	10.14	0.01	0.05	0.20	0.86	0.22	0.97	0.39	1.70
COMPRESSOR BLOWDOWNS: MSS EMISSIONS	MSS	BD VENT	---	---	---	---	83.59	4.01	---	---	---	---	---	---	8.65	0.42
FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUG	FUG	---	---	---	---	4.56	19.99	---	---	---	---	---	---	0.22	0.94
GUN BARREL: 500 BBL	T-001	LP COMB	EMISSIONS REPRESENTED @ EPN: LP COMB													
OIL STORAGE TANKS: 400 BBL	T-002 T-003 T-004 T-005	LP COMB	EMISSIONS REPRESENTED @ EPN: LP COMB													
WATER STORAGE TANKS: 400 BBL	T-006 T-007	LP COMB	EMISSIONS REPRESENTED @ EPN: LP COMB													
TRUCK LOADING: OIL & WATER (CONTROLLED)	LOAD	LP COMB	EMISSIONS REPRESENTED @ EPN: LP COMB													
50 MMSCFD TEG DEHY #1 FLASH TANK - RECYCLED TO INLET	DEHY1	HP FLARE	MSS EMISSIONS REPRESENTED @ EPN: HP FLARE													
50 MMSCFD TEG DEHY #2 FLASH TANK - RECYCLED TO INLET	DEHY2	HP FLARE	MSS EMISSIONS REPRESENTED @ EPN: HP FLARE													
50 MMSCFD TEG DEHY #1 STILL COLUMN (CONTROLLED W/ BTEX CONDENSER)	DEHY1	DEHY COMB	EMISSIONS REPRESENTED @ EPN: DEHY COMB													
50 MMSCFD TEG DEHY #2 STILL COLUMN (CONTROLLED W/ BTEX CONDENSER)	DEHY2	DEHY COMB	EMISSIONS REPRESENTED @ EPN: DEHY COMB													
LOW PRESSURE COMBUSTOR - NORMAL OPERATIONS	LP COMB	LP COMB	0.59	2.59	1.18	5.17	2.60	11.40	0.00	0.00	0.02	0.07	---	---	0.11	0.47
TEG DEHY COMBUSTOR - COMBINED STILL COLUMN EMISSIONS	DEHY COMB	DEHY COMB	0.01	0.05	0.02	0.09	0.25	1.08	0.00	0.00	0.00	0.00	---	---	0.09	0.39
EMERGENCY FLARE *	HP FLARE	HP FLARE	277.14	0.50	553.28	1.00	589.96	0.60	0.00	0.00	10.81	0.02	---	---	19.64	0.01
DEHY REBOILER: 0.75 MMBTU/HR BURNER	HTR-01	HTR-01	0.11	0.46	0.09	0.39	0.01	0.03	0.00	0.01	0.01	0.03	---	---	0.00	0.01
DEHY REBOILER: 0.75 MMBTU/HR BURNER	HTR-02	HTR-02	0.11	0.46	0.09	0.39	0.01	0.03	0.00	0.01	0.01	0.03	---	---	0.00	0.01
FUEL MEMBRANE HEATER: 2.5 MMBTU/HR BURNER	HTR-03	HTR-03	0.35	1.53	0.29	1.29	0.02	0.08	0.01	0.02	0.03	0.12	---	---	0.01	0.03

TOTAL FACILITY WIDE EMISSIONS	NOx		CO		VOC** (INCLUDES HAPs)		SO ₂		PM _{10 & 2.5}		HCHO		HAPs	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
	295.94	82.84	574.36	93.29	694.95	98.34	0.10	0.44	12.44	7.16	1.76	7.72	31.60	14.91

*Hourly Rates Include Instantaneous Flow Rates

**PTE does not include fugitive emissions as defined in 40 CFR 70.2

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
GHG (as CO₂e) FACILITY EMISSION SUMMARY

EMISSION SUMMARY TABLE

EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION NUMBER (FIN)	EMISSION POINT NUMBER (EPN)	CO ₂ e	
			lb/hr	TPY
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG1	ENG1	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG2	ENG2	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG3	ENG3	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG4	ENG4	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG5	ENG5	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG6	ENG6	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG7	ENG7	2915.56	11585.02
Caterpillar G3608 TALE Compressor Engine (Controlled - Oxidation Catalyst)	ENG8	ENG8	2915.56	11585.02
LOW PRESSURE COMBUSTOR - NORMAL OPERATIONS	LP COMB	LP COMB	517.96	2058.12
TEG DEHY COMBUSTOR - COMBINED STILL COLUMN EMISSIONS	DEHY COMB	DEHY COMB		
EMERGENCY FLARE	HP FLARE	HP FLARE	7628.91	179.94
DEHY REBOILER: 0.75 MMBTU/HR BURNER	HTR-01	HTR-01	90.44	360.27
DEHY REBOILER: 0.75 MMBTU/HR BURNER	HTR-02	HTR-02	90.44	360.27
FUEL MEMBRANE HEATER: 2.5 MMBTU/HR BURNER	HTR-03	HTR-03	301.47	1200.89

TOTAL FACILITY WIDE EMISSIONS (CO ₂ e)	CO ₂ e	
	lb/hr	TPY
	31,953.74	96,839.67

*Hourly Rates Include Instantaneous Flow Rates

Attachment # 6
Component Analyses

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
FACILITY INLET GAS ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	0.74	1.32
Nitrogen	1.58	1.79
Methane	64.41	41.71
Ethane	16.97	20.60
Propane	7.94	14.14
Isobutane	1.01	2.37
n-Butane	2.78	6.53
Isopentane	0.64	1.85
n-Pentane	0.95	2.76
n-Hexane	0.30	1.05
Cyclohexane	0.01	0.05
i-C6	0.36	1.24
iC7	0.43	1.73
Methylcyclohexane	0.01	0.04
n-Octane	0.15	0.67
MEMBRANE HEATER: 2.5 MMBTU	0.04	0.18
Benzene	0.03	0.10
Toluene	0.03	0.10
Ethylbenzene	0.00	0.02
o-Xylene	0.02	0.08
Hydrogen Sulfide	0.00	0.00
Water	1.54	1.12
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.06	0.55
Total	100.00	100.00

MOLECULAR WEIGHT	24.77
SATURATED BTU	1417
NMHC	54.053%
VOCs (NMNEHC)	33.457%
HAPs	1.340%
H2S Mole Percentage	0.000%

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
COMPRESSOR INLET GAS ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	0.78	1.40
Nitrogen	1.55	1.77
Methane	65.20	42.79
Ethane	17.53	21.56
Propane	8.17	14.73
Isobutane	1.03	2.45
n-Butane	2.81	6.67
Isopentane	0.62	1.82
n-Pentane	0.91	2.68
n-Hexane	0.25	0.90
Cyclohexane	0.01	0.04
i-C6	0.32	1.12
iC7	0.31	1.28
Methylcyclohexane	0.01	0.03
n-Octane	0.05	0.24
MEMBRANE HEATER: 2.5 MMBTU	0.00	0.03
Benzene	0.03	0.08
Toluene	0.02	0.06
Ethylbenzene	0.00	0.01
o-Xylene	0.01	0.02
Hydrogen Sulfide	0.00	0.00
Water	0.41	0.30
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.00	0.00
Total	100.00	100.00

MOLECULAR WEIGHT	24.44
SATURATED BTU	1411
NMHC	53.727%
VOCs (NMNEHC)	32.165%
HAPs	1.071%
H2S Mole Percentage	0.000%

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
COMPRESSOR FUEL GAS ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	0.46	1.01
Nitrogen	2.84	4.02
Methane	79.42	64.39
Ethane	12.41	18.86
Propane	3.90	8.69
Isobutane	0.22	0.66
n-Butane	0.55	1.61
Isopentane	0.08	0.30
n-Pentane	0.10	0.35
n-Hexane	0.01	0.05
Cyclohexane	0.00	0.00
i-C6	0.01	0.04
iC7	0.00	0.02
Methylcyclohexane	0.00	0.00
n-Octane	0.00	0.00
MEMBRANE HEATER: 2.5 MMBTU	0.00	0.00
Benzene	0.00	0.00
Toluene	0.00	0.00
Ethylbenzene	0.00	0.00
o-Xylene	0.00	0.00
Hydrogen Sulfide	0.00	0.00
Water	0.00	0.00
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.00	0.00
Total	100.00	100.00

MOLECULAR WEIGHT	19.79
SATURATED BTU	1153
NMHC	30.584%
VOCs (NMNEHC)	11.723%
HAPs	0.055%
H2S Mole Percentage	0.000%

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
SALES CONDENSATE ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	0.37	0.30
Nitrogen	0.06	0.03
Methane	11.60	3.46
Ethane	17.71	9.89
Propane	19.99	16.37
Isobutane	4.35	4.69
n-Butane	14.69	15.85
Isopentane	4.94	6.62
n-Pentane	8.22	11.01
n-Hexane	3.97	6.35
Cyclohexane	0.21	0.32
i-C6	4.30	6.88
iC7	6.42	11.94
Methylcyclohexane	0.16	0.29
n-Octane	1.76	3.73
Nonane	0.23	0.54
Benzene	0.39	0.57
Toluene	0.39	0.67
Ethylbenzene	0.05	0.09
o-Xylene	0.20	0.39
Hydrogen Sulfide	0.00	0.00
Water	0.02	0.01
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.00	0.00
Total	100.00	100.00

MOLECULAR WEIGHT	53.85
SATURATED BTU	3012
NMHC	96.205%
VOCs (NMNEHC)	86.314%
HAPs	8.065%
H2S Mole Percentage	0.000%

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
SALES GAS ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	0.79	1.43
Nitrogen	1.57	1.82
Methane	66.01	43.87
Ethane	17.61	21.93
Propane	8.10	14.81
Isobutane	1.01	2.42
n-Butane	2.71	6.52
Isopentane	0.58	1.73
n-Pentane	0.84	2.50
n-Hexane	0.21	0.75
Cyclohexane	0.01	0.03
i-C6	0.27	0.97
iC7	0.23	0.95
Methylcyclohexane	0.00	0.02
n-Octane	0.03	0.12
Nonane	0.00	0.01
Benzene	0.02	0.07
Toluene	0.01	0.04
Ethylbenzene	0.00	0.00
o-Xylene	0.00	0.01
Hydrogen Sulfide	0.00	0.00
Water	0.01	0.01
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.00	0.00
Total	100.00	100.00

MOLECULAR WEIGHT	24.14
SATURATED BTU	1399
NMHC	52.866%
VOCs (NMNEHC)	30.935%
HAPs	0.862%
H2S Mole Percentage	0.000%

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
DEHY STILL GAS ANALYSIS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Triethylene Glycol	0.00	0.00
Carbon Dioxide	5.58	4.85
Nitrogen	0.02	0.01
Methane	8.25	2.61
Ethane	15.92	9.45
Propane	17.36	15.11
Isobutane	2.73	3.13
n-Butane	13.41	15.38
Isopentane	3.89	5.53
n-Pentane	7.11	10.12
n-Hexane	2.46	4.19
Cyclohexane	0.44	0.73
i-C6	2.95	5.01
iC7	2.34	4.63
Methylcyclohexane	0.12	0.22
n-Octane	0.15	0.34
Nonane	0.00	0.01
Benzene	7.18	11.07
Toluene	2.37	4.30
Ethylbenzene	0.05	0.11
o-Xylene	0.27	0.56
Hydrogen Sulfide	0.00	0.00
Water	7.42	2.64
2,2,4-Trimethylpentane	0.00	0.00
Decanes Plus	0.00	0.00
Total	100.00	100.00

MOLECULAR WEIGHT	50.67
SATURATED BTU	2583
NMHC	89.893%
VOCs (NMNEHC)	80.444%
HAPs	20.225%
H2S Mole Percentage	0.000%

Attachment # 7
Emission Calculation Methodologies

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Methodology for Fugitives

Calculation Methodology

Fugitives (Equipment Leaks) - VOC Emissions

Fugitives were calculated using AP-42 factors based on the type of fitting, valve, line, etc. and based on how the line is used (i.e. gas, light liquid service, etc.). Since these emission factors are for estimating total hydrocarbon emissions, the calculated emissions are multiplied by the VOC or HAP Weight Percentage of the service type.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Methodology for Engine Calculations

Engine Emission Calculations

Manufacturer's Data or NSPS Subpart JJJJ Limit Calculations

Emission Rate_X (lb/hr) = Emission Factor_X (g/hp-hr) * Rated hp / 453.6 (g/lb)

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

AP 42 Emission Factors

Emission Rate_X (lb/hr) = Fuel Consumption (MMBTU/hp-hr) * EF_X (lb/MMBTU) * Rated hp

Annual Emission Rate_X (TPY) = Emission Rate_X (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Methodology for Gun Barrel & Tank Emissions

Calculation Methodology

Storage Tank Emissions - VOC Emissions

Storage Tank emissions were estimated using BR&E's ProMax 5.0 for Flash, Working, & Breathing Losses. Liquids sent to the storage tanks on location will be controlled by a low pressure combustor. A 98% control efficiency was assumed for the low pressure combustor.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

Emission Rate_X (lb/hr) = Burner Rating (MMBTU/hr) * EF_X (lb/MMSCF) / Heating Value of Fuel Gas (BTU/SCF)

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %} * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) * SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

MW_{GAS} = Molecular Weight of the Gas, H₂S_{WEIGHT %} = Weight Percent of the H₂S in the Fuel Gas, DRE = Burner Combustion Efficiency of H₂S

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
Methodology for Flare/Combustor Calculations

Flare/Combustor Calculations

VOC Combustor Calculations - Uses the Ideal Gas Law for Mixtures

$$\text{VOC Mass Flow Rate (lb/day)} = P * V / 10.73 / T * \text{MW}_{\text{GAS}} * \text{VOC}_{\text{WEIGHT \%}} * (1 - \text{DRE})$$

P = Pressure (psia), V = Volume of Gas in a Day (ft^3/day), 10.73 = Ideal Gas Constant, T = Temperature ($^{\circ}\text{R}$)

MW_{GAS} = Molecular Weight of the Gas, $\text{VOC}_{\text{WEIGHT \%}}$ = Weight Percent of the Total VOC, DRE = Flare Destruction Efficiency

NOx & CO Calculations - TCEQ Emission Factors Used

$$\text{NOx (lb/day)} = \text{Heating Value (BTU}/\text{ft}^3) * \text{EF (lb/MMBTU)} * V (\text{ft}^3/\text{Day}) / 10^6 (\text{BTU}/\text{MMBTU})$$

$$\text{CO (lb/day)} = \text{Heating Value (BTU}/\text{ft}^3) * \text{EF (lb/MMBTU)} * V (\text{ft}^3/\text{Day}) / 10^6 (\text{BTU}/\text{MMBTU})$$

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

*NOx and CO Emission Factors are the highest of Low BTU and High BTU options for TCEQ Flare Emission Factors - Calculating emissions using these factors overestimates either NOx or CO depending on the Heating Value of the Gas

SO₂ & H₂S Calculations - Mass Balance

$$\text{H}_2\text{S Mass Flow Rate (lb/hr)} = P * V / 10.73 / T * \text{MW}_{\text{GAS}} * \text{H}_2\text{S}_{\text{WEIGHT \%}} * (1 - \text{DRE})$$

P = Pressure (psia), V = Fuel Consumed in a hour (ft^3/hr), 10.73 = Ideal Gas Constant, T = Temperature ($^{\circ}\text{R}$)

$$\text{Uncontrolled H}_2\text{S Mass Flow Rate (lb/hr)} = P * V / 10.73 / T * \text{MW}_{\text{GAS}} * \text{H}_2\text{S}_{\text{WEIGHT \%}}$$

$$\text{SO}_2 \text{ Emission Rate (lb/hr)} = \text{Uncontrolled H}_2\text{S Mass Rate (lb/hr)} * \text{SO}_2 \text{ Conversion Efficiency} * (\text{MW of SO}_2 (\text{lb/lb-mol}) / \text{MW of H}_2\text{S (\text{lb/lb-mol})})$$

$$\text{Annual Emission Rate (TPY)} = \text{Emission Rate (lb/hr)} * 8760 (\text{hour/year}) / 2000 (\text{lb/ton})$$

MW_{GAS} = Molecular Weight of the Gas, $\text{H}_2\text{S}_{\text{WEIGHT \%}}$ = Weight Percent of the H₂S in Gas Stream, DRE = Flare Destruction Efficiency of H₂S

Attachment # 8
Emission Calculations

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
LEAN BURN ENGINES

Emission Calculations - Compressor Engines

Source ID	Unit Description	Yearly Operating Hours	Rated HP	MMbtu/hp-hr ¹ (HHV)	Manufacturer's Data				AP-42 Factors		Emissions Data											
					g/hp-hr				lb/MMBtu		lb/hr				tpy							
					NOx	CO	VOC ²	HCHO	SO ₂ ³	PM _{10 & 2.5} ⁴	NOx	CO	VOC	HCHO	SO ₂	PM _{10 & 2.5}	NOx	CO	VOC	HCHO	SO ₂	PM _{10 & 2.5}
ENG1	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG2	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG3	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG4	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG5	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG6	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG7	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86
ENG8	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.40	0.44	0.42	0.04	0.00059	0.01006	2.20	2.43	2.31	0.22	0.01	0.20	9.66	10.62	10.14	0.97	0.05	0.86

¹HHV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report

²Emission Factor Includes HCHO

³SO₂ Emissions were calculated using the emission factor from Table 3.2-2

⁴PM Emission Factor = 7.71E-05 lb/MMBTU + 7.71E-05 lb/MMBTU + 9.91E-03 lb/MMBTU = 0.01006 lb/MMBTU

Total Emissions Per Pollutant (TPY)

NOx	CO	VOC	HCHO	SO ₂	PM _{10 & 2.5}
77.25	84.97	81.11	7.72	0.40	6.88

**NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
LEAN BURN ENGINES - HAP EMISSIONS**

Emission Calculations - Compressor Engines

Source ID	Unit Description	Yearly Operating Hours	Rated HP	MMBtu/hp-hr ¹ (HHV)	HCHO	AP-42 Factors ²						lb/hr ³						tpy ³										
						lb/MMBtu						lb/hr ³						tpy ³										
						Mfr's Data g/hp-hr	Methanol	Benzene	Toluene	Acetaldehyde	Acrolein	Xylene	n-hexane	HCHO	Methanol	Benzene	Toluene	Acetaldehyde	Acrolein	Xylene	n-hexane	HCHO	Methanol	Benzene	Toluene	Acetaldehyde	Acrolein	Xylene
ENG1	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG2	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG3	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG4	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG5	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG6	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG7	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04
ENG8	CATERPILLAR G3608 TALE COMPRESSOR ENGINE	8760	2500	0.007807	0.04	0.0025	0.0004	0.0004	0.0084	0.0051	0.0002	0.0011	0.220	0.023	0.004	0.004	0.077	0.047	0.002	0.010	0.97	0.10	0.02	0.02	0.34	0.21	0.01	0.04

¹HHV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report

²AP-42 Emission Factors are from Table 3.2-2

³AP-42 Factors are uncontrolled rates: A controlled rate was derived by the Controlled VOC Emission Factor / Uncontrolled Emission Factor

Total Emissions Per Pollutant (TPY)						HCHO	Methanol	Benzene	Toluene	Acetaldehyde	Acrolein	Xylene	n-hexane
7.72	0.81	0.14	0.13	2.70	1.66	0.06	0.36						

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
COMPRESSOR BLOWDOWNS - ATMOSPHERE

Total Estimated Quantity Released	4113	(SCF/Blowdown)
Estimated Planned Number of Blowdowns	96	(Blowdowns/Year)
Duration	1	(Hours/Blowdown)

Component	Estimated Quantity Blowdown (lbs)	Total Estimated Quantity Emitted (lbs)	Emission Rate (lb/Hour)	Annualized Emission Rate (TPY)
Total VOCs (Includes Total HAPs)	83.59	8024.95	83.59	4.01
Total HAPs	8.65	830.75	8.65	0.42
BENZENE	0.69	65.80	0.69	0.03

Compressor blowdowns are routed to inlet suction or the Emergency HP flare. However, during maintenance activities the full volume of the unit could go to atmosphere to bleed off the pressure. XTO utilizes best management practices to minimize venting and direct as much volume to process or controls as possible. One event per month of maintenance (per compressor) for startup, shutdown or maintenance is included to be conservative.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
ESTIMATED COMPRESSOR BLOWDOWN VOLUME

Estimated Compressor Blowdown Volume

Standard Conditions	
14.7	psia
70	°F

Estimated Pressures & Temperatures

Suction	35	psig
1st Stage Discharge	157	psig
2nd Stage Discharge	465	psig
3rd Stage Discharge	1123	psig
1st Stage Suction	54	°F
1st Stage Discharge	244	°F
2nd Stage Suction	110	°F
2nd Stage Discharge	248	°F
3rd Stage Suction	110	°F
3rd Stage Discharge	272	°F
Final Discharge from AC	110	°F

Total Estimated Blowdown Volumes

Estimated Suction Volume	214.47	Standard ft ³
Estimated 1st Stage Discharge Volume	473.27	Standard ft ³
Estimated 2nd Stage Suction Volume	671.42	Standard ft ³
Estimated 2nd Stage Discharge Volume	631.19	Standard ft ³
Estimated 3rd Stage Suction Volume	871.44	Standard ft ³
Estimated 3rd Stage Discharge Volume	545.14	Standard ft ³
Estimated Final Discharge Volume	706.50	Standard ft ³

Estimated Blowdown Volume	4113	Standard ft³
----------------------------------	-------------	--------------------------------

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
FUGITIVE EMISSIONS - VOCs

Fugitive Emission Calculations

Component Type	Service	Estimated Components Count	Hours	Factors	Total VOC Weight %	Emissions		
						lb/hour	lb/year	tons/year
Valves	Gas/Vapor	950	8760	0.00992000	33.46%	3.15	27620.37	13.81
	Light Oil	0	8760	0.00550000	86.31%	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00001900	86.31%	0.00	0.00	0.00
	Water/Light Oil	700	8760	0.00021600	86.31%	0.13	1143.23	0.57
Pump Seals	Gas/Vapor	50	8760	0.00529000	33.46%	0.09	775.21	0.39
	Light Oil	10	8760	0.02866000	86.31%	0.25	2167.00	1.08
	Heavy Oil	0	8760	0.00113000	86.31%	0.00	0.00	0.00
	Water/Light Oil	20	8760	0.00005300	86.31%	0.00	8.01	0.00
Connectors	Gas/Vapor	1000	8760	0.00044000	33.46%	0.15	1289.58	0.64
	Light Oil	50	8760	0.00046300	86.31%	0.02	175.04	0.09
	Heavy Oil	0	8760	0.00001700	86.31%	0.00	0.00	0.00
	Water/Light Oil	188	8760	0.00024300	86.31%	0.04	345.42	0.17
Flanges	Gas/Vapor	750	8760	0.00086000	33.46%	0.22	1890.40	0.95
	Light Oil	20	8760	0.00024300	86.31%	0.00	36.75	0.02
	Heavy Oil	0	8760	0.00000086	86.31%	0.00	0.00	0.00
	Water/Light Oil	100	8760	0.00000620	86.31%	0.00	4.69	0.00
Open-ended Lines	Gas/Vapor	100	8760	0.00441000	33.46%	0.15	1292.51	0.65
	Light Oil	10	8760	0.00309000	86.31%	0.03	233.64	0.12
	Heavy Oil	0	8760	0.00030900	86.31%	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.00055000	86.31%	0.00	20.79	0.01
Other:	Gas/Vapor	10	8760	0.01940000	33.46%	0.06	568.59	0.28
	Light Oil	10	8760	0.01650000	86.31%	0.14	1247.58	0.62
	Heavy Oil	0	8760	0.00006800	86.31%	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	86.31%	0.13	1168.19	0.58

Emission Component	lb/hr	lb/year	TPY
Total VOC	4.56	39986.99	19.99

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
FUGITIVE EMISSIONS - HAPs

Fugitive Emission Calculations

Component Type	Service	Estimated Components Count	Hours	Factors	Total HAPs Weight %	Emissions		
						lb/hour	lb/year	tons/year
Valves	Gas/Vapor	950	8760	0.00992000	1.34%	0.126	1106.470	0.553
	Light Oil	0	8760	0.00550000	8.06%	0.000	0.000	0.000
	Heavy Oil	0	8760	0.00001900	8.06%	0.000	0.000	0.000
	Water/Light Oil	700	8760	0.00021600	8.06%	0.012	106.820	0.053
Pump Seals	Gas/Vapor	50	8760	0.00529000	1.34%	0.004	31.055	0.016
	Light Oil	10	8760	0.02866000	8.06%	0.023	202.478	0.101
	Heavy Oil	0	8760	0.00113000	8.06%	0.000	0.000	0.000
	Water/Light Oil	20	8760	0.00005300	8.06%	0.000	0.749	0.000
Connectors	Gas/Vapor	600	8760	0.00044000	1.34%	0.004	30.996	0.015
	Light Oil	50	8760	0.00046300	8.06%	0.002	16.355	0.008
	Heavy Oil	0	8760	0.00001700	8.06%	0.000	0.000	0.000
	Water/Light Oil	188	8760	0.00024300	8.06%	0.004	32.275	0.016
Flanges	Gas/Vapor	300	8760	0.00086000	1.34%	0.003	30.292	0.015
	Light Oil	20	8760	0.00024300	8.06%	0.000	3.434	0.002
	Heavy Oil	0	8760	0.00000086	8.06%	0.000	0.000	0.000
	Water/Light Oil	100	8760	0.00000620	8.06%	0.000	0.438	0.000
Open-ended Lines	Gas/Vapor	100	8760	0.00441000	1.34%	0.006	51.778	0.026
	Light Oil	10	8760	0.00309000	8.06%	0.002	21.830	0.011
	Heavy Oil	0	8760	0.00030900	8.06%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.00055000	8.06%	0.000	1.943	0.001
Other:	Gas/Vapor	10	8760	0.01940000	1.34%	0.003	22.778	0.011
	Light Oil	10	8760	0.01650000	8.06%	0.013	116.570	0.058
	Heavy Oil	0	8760	0.00006800	8.06%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.03090000	8.06%	0.012	109.152	0.055

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.22	1885.41	0.94

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
FUGITIVE EMISSIONS - BENZENE

Fugitive Emission Calculations

Component Type	Service	Estimated Components Count	Hours	Factors	Total Benzene Weight %	Emissions		
						lb/hour	lb/year	tons/year
Valves	Gas/Vapor	950	8760	0.00992000	0.10%	0.009	81.657	0.041
	Light Oil	0	8760	0.00550000	0.57%	0.000	0.000	0.000
	Heavy Oil	0	8760	0.00001900	0.57%	0.000	0.000	0.000
	Water/Light Oil	700	8760	0.00021600	0.57%	0.001	7.562	0.004
Pump Seals	Gas/Vapor	50	8760	0.00529000	0.10%	0.000	2.292	0.001
	Light Oil	10	8760	0.02866000	0.57%	0.002	14.334	0.007
	Heavy Oil	0	8760	0.00113000	0.57%	0.000	0.000	0.000
	Water/Light Oil	20	8760	0.00005300	0.57%	0.000	0.053	0.000
Connectors	Gas/Vapor	1000	8760	0.00044000	0.10%	0.000	3.813	0.002
	Light Oil	50	8760	0.00046300	0.57%	0.000	1.158	0.001
	Heavy Oil	0	8760	0.00001700	0.57%	0.000	0.000	0.000
	Water/Light Oil	188	8760	0.00024300	0.57%	0.000	2.285	0.001
Flanges	Gas/Vapor	750	8760	0.00086000	0.10%	0.001	5.589	0.003
	Light Oil	20	8760	0.00024300	0.57%	0.000	0.243	0.000
	Heavy Oil	0	8760	0.00000086	0.57%	0.000	0.000	0.000
	Water/Light Oil	100	8760	0.00000620	0.57%	0.000	0.031	0.000
Open-ended Lines	Gas/Vapor	100	8760	0.00441000	0.10%	0.000	3.821	0.002
	Light Oil	10	8760	0.00309000	0.57%	0.000	1.545	0.001
	Heavy Oil	0	8760	0.00030900	0.57%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.00055000	0.57%	0.000	0.138	0.000
Other:	Gas/Vapor	10	8760	0.01940000	0.10%	0.000	1.681	0.001
	Light Oil	10	8760	0.01650000	0.57%	0.001	8.252	0.004
	Heavy Oil	0	8760	0.00006800	0.57%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.03090000	0.57%	0.001	7.727	0.004

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.016	142.18	0.071

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
BURNER CALCULATIONS

CRITERIA & REGULATED POLLUTANTS

Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	AP-42 Factors ¹ lb/MMSCF					lb/hr					tpy				
				NOx	CO	VOC	SO ₂	PM _{10 & 2.5}	NOx	CO	VOC	SO ₂	PM _{10 & 2.5}	NOx	CO	VOC	SO ₂	PM _{10 & 2.5}
HTR-01	1153.5	8760	0.75	113	95	6.2	1.81	8.6	0.105	0.088	0.006	0.002	0.008	0.460	0.386	0.025	0.007	0.035
HTR-02	1153.5	8760	0.75	113	95	6.2	1.81	8.6	0.105	0.088	0.006	0.002	0.008	0.460	0.386	0.025	0.007	0.035
HTR-03	1153.5	8760	2.50	113	95	6.2	1.81	8.6	0.350	0.294	0.019	0.006	0.027	1.534	1.288	0.084	0.025	0.117

*Source: AP-42 Table 1.4-1, 1.4-2, & 1.4-3

**Burners - 70% Efficiency

¹Factors are adjusted for Site Fuel Heating Value: Example Calculation - Nox Factor = 100 * 1184.4 / 1020 = 116 lb/MMSCF

Total (tpy)	NOx	CO	VOC	SO ₂ ¹	PM _{10 & 2.5}
	2.454	2.061	0.135	0.039	0.186

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
BURNER CALCULATIONS

HAZARDOUS AIR POLLUTANTS (HAPs)

Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	AP-42 Factors lb/MMSCF				lb/hr				tpy						
				Benzene	Toluene	N-Hexane	HCHO	Diclorobenz.	Benzene	Toluene	N-Hexane	HCHO	Diclorobenz.	Benzene	Toluene	N-Hexane	HCHO	Diclorobenz.
1153.5 MEMBRANE HEATER: 2.5 BTU/SCF	1153.5	8760.0	0.75	0.0024	0.0038	2.0	0.0848	0.0014	0.000002	0.000004	0.001891	0.000079	0.000001	0.000010	0.000016	0.008282	0.000345	0.000006
HTR-02	1153.5	8760.0	0.75	0.0024	0.0038	2.0	0.0848	0.0014	0.000002	0.000004	0.001891	0.000079	0.000001	0.000010	0.000016	0.008282	0.000345	0.000006
HTR-03	1153.5	8760.0	2.5	0.0024	0.0038	2.0	0.0848	0.0014	0.000007	0.000012	0.006303	0.000263	0.000004	0.000032	0.000052	0.027605	0.001150	0.000018

*Source: AP-42 Table 1.4-1, 1.4-2, & 1.4-3

**Burners - 70% Efficiency

¹Factors are adjusted for Site Fuel Heating Value: Example Calculation - Nox Factor = 100 * 1184.4/1020 = 116 lb/MMSCF

Total Individual HAPS (tpy)	Benzene	Toluene	Hexane	HCHO	Diclorobenz.
	0.000052	0.000083	0.044168	0.001840	0.000029

Total Combined HAPS (tpy)	0.04617
---------------------------	---------

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
BURNER - TOTAL EMISSION SUMMARY

Total Burner Emissions

Stream Source	NOx		CO		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
	Ib/hr	TPY	Ib/hr	TPY	Ib/hr	TPY	Ib/hr	TPY	Ib/hr	TPY	Ib/hr	TPY
HTR-01	0.11	0.46	0.09	0.39	0.01	0.03	0.00	0.01	0.01	0.03	0.00	0.01
HTR-02	0.11	0.46	0.09	0.39	0.01	0.03	0.00	0.01	0.01	0.03	0.00	0.01
HTR-03	0.35	1.53	0.29	1.29	0.02	0.08	0.01	0.02	0.03	0.12	0.01	0.03
Total Emissions	0.56	2.45	0.47	2.06	0.03	0.13	0.01	0.04	0.04	0.19	0.01	0.05

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
TEG DEHYDRATOR #1 STILL VENT - HOURLY EMISSIONS

TEG Dehydrator Still Vent Hourly Emissions - BTEX Condenser

Hourly Still Vent Emissions Routed to BTEX Condenser & Dehy Combustor ^a			
Component	Uncontrolled Still Vent Vapors	BTEX Condenser Control Efficiency	Excess Condenser Vapors
	(lb/hr)	(%)	(lb/hr)
Triethylene Glycol	0.16	80%	0.03
Carbon Dioxide	1.12	80%	0.22
Nitrogen	0.00	80%	0.00
Methane	0.60	80%	0.12
Ethane	2.17	80%	0.43
Propane	3.51	80%	0.70
Isobutane	0.75	80%	0.15
n-Butane	3.74	80%	0.75
Isopentane	1.46	80%	0.29
n-Pentane	2.78	80%	0.56
n-Hexane	1.55	80%	0.31
Cyclohexane	0.32	80%	0.06
i-C6	1.66	80%	0.33
iC7	2.43	80%	0.49
Methylcyclohexane	0.16	80%	0.03
n-Octane	0.55	80%	0.11
Nonane	0.04	80%	0.01
Benzene	5.11	80%	1.02
Toluene	4.07	80%	0.81
Ethylbenzene	0.30	80%	0.06
o-Xylene	1.46	80%	0.29
Hydrogen Sulfide	0.00	80%	0.00
Water	152.79	80%	30.56
2,2,4-Trimethylpentane	0.00	80%	0.00
Decanes Plus	0.00	80%	0.00
Total	186.71	-	37.34
Total VOC	29.87	-	5.97
Total HAP	12.48	-	2.50
Heating Value (Btu/scf)	2583.33	-	2583.33
Molecular Weight	50.67	-	50.67
SO2 Emissions (lb/hr)	0.00	-	0.00
Volumetric Flow (scf/hr)	171.09	-	171.09
Heat Release (MMBtu/hr)	0.44	-	0.44

Still Vent Vapor Controls	
BTEX Condenser Control Efficiency	80%
Combustor Destruction Efficiency	98%

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^b Flare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
TEG DEHYDRATOR #2 STILL VENT - HOURLY EMISSIONS

TEG Dehydrator Still Vent Hourly Emissions - BTEX Condenser

Hourly Still Vent Emissions Routed to BTEX Condenser & Dehy Combustor ^a			
Component	Uncontrolled Still Vent Vapors	BTEX Condenser Control Efficiency	Excess Condenser Vapors
	(lb/hr)	(%)	(lb/hr)
Triethylene Glycol	0.16	80%	0.03
Carbon Dioxide	1.12	80%	0.22
Nitrogen	0.00	80%	0.00
Methane	0.60	80%	0.12
Ethane	2.17	80%	0.43
Propane	3.51	80%	0.70
Isobutane	0.75	80%	0.15
n-Butane	3.74	80%	0.75
Isopentane	1.46	80%	0.29
n-Pentane	2.78	80%	0.56
n-Hexane	1.55	80%	0.31
Cyclohexane	0.32	80%	0.06
i-C6	1.66	80%	0.33
iC7	2.43	80%	0.49
Methylcyclohexane	0.16	80%	0.03
n-Octane	0.55	80%	0.11
Nonane	0.04	80%	0.01
Benzene	5.11	80%	1.02
Toluene	4.07	80%	0.81
Ethylbenzene	0.30	80%	0.06
o-Xylene	1.46	80%	0.29
Hydrogen Sulfide	0.00	80%	0.00
Water	152.79	80%	30.56
2,2,4-Trimethylpentane	0.00	80%	0.00
Decanes Plus	0.00	80%	0.00
Total	186.71	-	37.34
Total VOC	29.87	-	5.97
Total HAP	12.48	-	2.50
Heating Value (Btu/scf)	2583.33	-	2583.33
Molecular Weight	50.67	-	50.67
SO2 Emissions (lb/hr)	0.00	-	0.00
Volumetric Flow (scf/hr)	171.09	-	171.09
Heat Release (MMBtu/hr)	0.44	-	0.44

Still Vent Vapor Controls	
BTEX Condenser Control Efficiency	80%
Combustor Destruction Efficiency	98%

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^b Flare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

**NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
DEHY 1 & 2 COMBUSTOR - HOURLY EMISSIONS**

TEG Dehydrator Still Vent Hourly Emissions

Component	Hourly Still Vent Emissions Routed to BTEX Condenser & Dehy Combustor ^a					
	Dehy 1 Still Vent Vapors from BTEX Cond.	Dehy 2 Still Vent Vapors from BTEX Cond.	Pilot	Total	Combustor Destruction Efficiency	Combustor Exhaust (controlled)
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)
Triethylene Glycol	0.03	0.03	0.00	0.06	0%	0.06
Carbon Dioxide	0.22	0.22	0.03	0.48	0%	0.48
Nitrogen	0.00	0.00	0.14	0.14	0%	0.14
Methane	0.12	0.12	2.18	2.42	98%	0.05
Ethane	0.43	0.43	0.64	1.51	98%	0.03
Propane	0.70	0.70	0.29	1.70	98%	0.03
Isobutane	0.15	0.15	0.02	0.32	98%	0.01
n-Butane	0.75	0.75	0.05	1.55	98%	0.03
Isopentane	0.29	0.29	0.01	0.59	98%	0.01
n-Pentane	0.56	0.56	0.01	1.12	98%	0.02
n-Hexane	0.31	0.31	0.00	0.62	98%	0.01
Cyclohexane	0.06	0.06	0.00	0.13	98%	0.00
i-C6	0.33	0.33	0.00	0.66	98%	0.01
iC7	0.49	0.49	0.00	0.97	98%	0.02
Methylcyclohexane	0.03	0.03	0.00	0.06	98%	0.00
n-Octane	0.11	0.11	0.00	0.22	98%	0.00
Nonane	0.01	0.01	0.00	0.02	98%	0.00
Benzene	1.02	1.02	0.00	2.04	98%	0.04
Toluene	0.81	0.81	0.00	1.63	98%	0.03
Ethylbenzene	0.06	0.06	0.00	0.12	98%	0.00
o-Xylene	0.29	0.29	0.00	0.58	98%	0.01
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0%	0.00
Water	30.56	30.56	0.00	61.12	0%	61.12
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	98%	0.00
Decanes Plus	0.00	0.00	0.00	0.00	98%	0.00
Total	37.34	37.34	3.39	78.07	-	62.12
Total VOC	5.97	5.97	0.40	12.35	-	0.25
Total HAP	2.50	2.50	0.00	4.99	-	0.09
Heating Value (Btu/scf)	2583.33	2583.33	1153.46	2355.07		
Molecular Weight	50.67	50.67	19.79	--		
SO2 Emissions (lb/hr)	0.00	0.00	0.00	0.00		
Volumetric Flow (scf/hr)	171.09	171.09	65.00	407.19		
Heat Release (MMBtu/hr)	0.44	0.44	0.07	0.96		

Component	Criteria Pollutant Emissions from Combustor ^b		
	Emission Rate (lb/hr)	Emission Factor	Emission Factor Units
NO _x	0.01	0.138	lb/MMBtu
CO	0.02	0.2755	lb/MMBtu
SO ₂	0.00	--	--
PM ₁₀	0.00	7.60	lb/MMscf
PM _{2.5}	0.00	7.60	lb/MMscf
H ₂ S	0.00	--	--

Still Vent Vapor Controls	
BTEX Condenser Control Efficiency	80%
Combustor Destruction Efficiency	98%

Footnotes:

^aUncontrolled stream properties determined via ProMax.

^bFlare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

^cThe combustor VOC destruction efficiency is 98% per manufacturer specifications.

**NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
DEHY 1 & 2 COMBUSTOR - ANNUAL EMISSIONS**

TEG Dehydrator Still Vent Annual Emissions

Component	Annual Still Vent Emissions Routed to BTEX Condenser & Dehy Combustor ^a					
	Dehy 1 Still Vent Vapors from BTEX Cond.	Dehy 2 Still Vent Vapors from BTEX Cond.	Pilot	Total	Combustor Destruction Efficiency	Combustor Exhaust (controlled)
	(ton/year)	(ton/year)	(ton/year)	(ton/year)	(%)	(ton/year)
Triethylene Glycol	0.14	0.14	0.00	0.28	0%	0.28
Carbon Dioxide	0.98	0.98	0.15	2.11	0%	2.11
Nitrogen	0.00	0.00	0.60	0.60	0%	0.60
Methane	0.52	0.52	9.56	10.60	98%	0.21
Ethane	1.90	1.90	2.80	6.60	98%	0.13
Propane	3.08	3.08	1.29	7.44	98%	0.15
Isobutane	0.65	0.65	0.10	1.40	98%	0.03
n-Butane	3.28	3.28	0.24	6.80	98%	0.14
Isopentane	1.28	1.28	0.04	2.60	98%	0.05
n-Pentane	2.43	2.43	0.05	4.92	98%	0.10
n-Hexane	1.36	1.36	0.01	2.72	98%	0.05
Cyclohexane	0.28	0.28	0.00	0.55	98%	0.01
i-C6	1.45	1.45	0.01	2.91	98%	0.06
iC7	2.13	2.13	0.00	4.26	98%	0.09
Methylcyclohexane	0.14	0.14	0.00	0.27	98%	0.01
n-Octane	0.48	0.48	0.00	0.97	98%	0.02
Nonane	0.04	0.04	0.00	0.07	98%	0.00
Benzene	4.48	4.48	0.00	8.96	98%	0.18
Toluene	3.56	3.56	0.00	7.13	98%	0.14
Ethylbenzene	0.26	0.26	0.00	0.52	98%	0.01
o-Xylene	1.28	1.28	0.00	2.55	98%	0.05
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0%	0.00
Water	133.85	133.85	0.00	267.69	0%	267.69
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	98%	0.00
Decanes Plus	0.00	0.00	0.00	0.00	98%	0.00
Total	163.56	163.56	14.85	341.96	-	272.11
Total VOC	26.17	26.17	1.74	54.07	-	1.08
Total HAP	10.93	10.93	0.01	21.88	-	0.39
Heating Value (Btu/scf)	2583.33	2583.33	1153.46	2355.07		
Molecular Weight	50.67	50.67	19.79	--		
SO2 Emissions (lb/hr)	0.00	0.00	0.00	0.00		
Volumetric Flow (scf/hr)	171.09	171.09	65.00	407.19		
Heat Release (MMBtu/hr)	0.44	0.44	0.07	0.96		

Criteria Pollutant Emissions from Combustor ^b			
Component	Emission Rate (ton/year)	Emission Factor	Emission Factor Units
NO _x	0.05	0.138	lb/MMBtu
CO	0.09	0.2755	lb/MMBtu
SO ₂	0.00	--	--
PM ₁₀	0.00	7.60	lb/MMscf
PM _{2.5}	0.00	7.60	lb/MMscf
H ₂ S	0.00	--	--

Still Vent Vapor Controls	
BTEX Condenser Control Efficiency	80%
Combustor Destruction Efficiency	98%

Footnotes:

^aUncontrolled stream properties determined via ProMax.

^bFlare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

^cThe combustor VOC destruction efficiency is 98% per manufacturer specifications.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
LP COMBUSTOR HOURLY EMISSIONS - NORMAL OPERATIONS

LP COMBUSTOR HOURLY - NORMAL OPERATIONS

Component	Maximum Hourly Emission Rates and Composition to Combustor ^{a,b}								Criteria Pollutant Emissions from Combustor ^c				
	Pilot ^c (lb/hr)	Compressor Rod Packing ^d (lb/hr)	OT, WT, GB Flash Vapors (lb/hr)	OT, WT, GB Working Vapors (lb/hr)	OT, WT, GB Breathing Vapors (lb/hr)	OT & WT Truck Loading (lb/hr)	Total (lb/hr)	Destruction Efficiency (%)	Flare Exhaust (controlled) (lb/hr)	Component	Emission Rate (lb/hr)	Emission Factor	Emission Factor Units
Triethylene Glycol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00	NO _x	0.59	0.138	lb/MMBtu
Carbon Dioxide	0.03	0.29	1.15	0.34	0.04	0.13	1.98	0%	1.98	CO	1.18	0.2755	lb/MMBtu
Nitrogen	0.14	0.37	0.13	0.00	0.00	0.00	0.65	0%	0.65	SO ₂	0.00	--	--
Methane	2.18	8.91	11.71	1.29	0.20	0.48	24.77	98%	0.50	PM ₁₀	0.02	7.60	lb/MMscf
Ethane	0.64	4.46	28.75	5.30	0.66	1.44	41.24	98%	0.82	PM _{2.5}	0.02	7.60	lb/MMscf
Propane	0.29	3.01	38.04	6.47	0.82	1.79	50.43	98%	1.01	H ₂ S	0.00	--	--
Isobutane	0.02	0.49	7.96	1.30	0.17	0.36	10.30	98%	0.21	Storage Tank Vapor Controls			
n-Butane	0.05	1.33	23.11	3.70	0.48	1.05	29.72	98%	0.59	Combustor Destruction Efficiency	98%		
Isopentane	0.01	0.35	6.70	1.04	0.14	0.30	8.53	98%	0.17				
n-Pentane	0.01	0.51	9.98	1.54	0.20	0.44	12.67	98%	0.25				
n-Hexane	0.00	0.15	3.46	0.51	0.07	0.15	4.33	98%	0.09				
Cyclohexane	0.00	0.01	0.17	0.03	0.00	0.01	0.21	98%	0.00				
i-C6	0.00	0.20	4.27	0.64	0.08	0.18	5.38	98%	0.11				
iC7	0.00	0.19	4.94	0.72	0.09	0.21	6.15	98%	0.12				
Methylcyclohexane	0.00	0.00	0.10	0.01	0.00	0.00	0.13	98%	0.00				
n-Octane	0.00	0.02	0.95	0.13	0.02	0.04	1.16	98%	0.02				
Nonane	0.00	0.00	0.10	0.01	0.00	0.00	0.12	98%	0.00				
Benzene	0.00	0.01	0.38	0.08	0.01	0.03	0.51	98%	0.01				
Toluene	0.00	0.01	0.25	0.05	0.01	0.02	0.34	98%	0.01				
Ethylbenzene	0.00	0.00	0.02	0.00	0.00	0.00	0.03	98%	0.00				
o-Xylene	0.00	0.00	0.09	0.02	0.00	0.01	0.12	98%	0.00				
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00				
Water	0.00	0.03	1.16	0.26	0.03	0.10	1.57	0%	1.57				
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Decanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Total	3.39	20.35	143.39	23.44	3.02	6.74	200.33	--	8.12				
Total VOC	0.40	6.29	100.50	16.25	2.09	4.58	130.12	--	2.60				
Total HAP	0.00	0.18	4.20	0.67	0.09	0.21	5.33	--	0.11				
Heating Value (Btu/scf)	1153.46	1397.13	2262.01	2287.24	2264.81	2209.38	2092.78						
Molecular Weight	19.79	24.14	40.18	41.04	40.54	39.94	--						
SO ₂ Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Hours/Year	8760.00	8760.00	8760.00	8760.00	8760.00	8760.00	8760.00						
Volumetric Flow (scf/hr)	65.00	320.00	1354.27	216.71	28.31	64.00	2048.29						
Heat Release (MMBtu/hr)	0.07	0.45	3.06	0.50	0.06	0.14	4.29						

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^b Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature. Truck loading vapors are routed to the LP combustor.

^c Pilot fuel gas emissions are calculated based on a 65 scfh flow rate.

^d Compressor Rod Packing is routed to the LP Combustor to minimize venting. 40 scfh per unit is assumed to go to the LP Combustor.

^e Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. The combustor VOC destruction efficiency is 98% per manufacturer specifications

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
LP COMBUSTOR ANNUAL EMISSIONS - NORMAL OPERATIONS

LP COMBUSTOR ANNUAL - NORMAL OPERATIONS

Maximum Annual Emission Rates and Composition to Combustor ^{a,b}									
Component	Pilot ^c	Compressor Rod Packing ^d	OT, WT, GB Flash Vapors	OT, WT, GB Working Vapors	OT, WT, GB Breathing Vapors	OT & WT Truck Loading	Total	Destruction Efficiency	Flare Exhaust (controlled)
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)
Triethylene Glycol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00
Carbon Dioxide	0.15	1.28	5.03	1.47	0.17	0.56	8.67	0%	8.67
Nitrogen	0.60	1.62	0.59	0.02	0.00	0.01	2.83	0%	2.83
Methane	9.56	39.04	51.27	5.64	0.87	2.12	108.50	98%	2.17
Ethane	2.80	19.53	125.91	23.21	2.89	6.30	180.63	98%	3.61
Propane	1.29	13.18	166.59	28.35	3.61	7.85	220.88	98%	4.42
Isobutane	0.10	2.16	34.85	5.67	0.73	1.59	45.10	98%	0.90
n-Butane	0.24	5.81	101.23	16.20	2.09	4.58	130.15	98%	2.60
Isopentane	0.04	1.54	29.33	4.57	0.59	1.30	37.37	98%	0.75
n-Pentane	0.05	2.23	43.70	6.72	0.88	1.91	55.49	98%	1.11
n-Hexane	0.01	0.67	15.14	2.24	0.29	0.64	18.99	98%	0.38
Cyclohexane	0.00	0.03	0.73	0.11	0.01	0.03	0.91	98%	0.02
i-C6	0.01	0.86	18.70	2.81	0.37	0.80	23.56	98%	0.47
iC7	0.00	0.85	21.62	3.14	0.41	0.90	26.93	98%	0.54
Methylcyclohexane	0.00	0.02	0.45	0.07	0.01	0.02	0.56	98%	0.01
n-Octane	0.00	0.11	4.15	0.57	0.08	0.17	5.07	98%	0.10
Nonane	0.00	0.01	0.45	0.06	0.01	0.02	0.54	98%	0.01
Benzene	0.00	0.06	1.64	0.35	0.04	0.13	2.24	98%	0.04
Toluene	0.00	0.04	1.10	0.23	0.03	0.09	1.48	98%	0.03
Ethylbenzene	0.00	0.00	0.10	0.02	0.00	0.01	0.13	98%	0.00
o-Xylene	0.00	0.01	0.40	0.08	0.01	0.03	0.53	98%	0.01
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00
Water	0.00	0.11	5.07	1.13	0.14	0.44	6.89	0%	6.89
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00
Decanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00
Total	14.85	89.14	628.06	102.66	13.25	29.50	877.46	—	35.58
Total VOC	1.74	27.57	440.18	71.19	9.17	20.08	569.93	—	11.40
Total HAP	0.01	0.78	18.39	2.92	0.38	0.90	23.36	—	0.47
Heating Value (Btu/scf)	1153.46	1397.13	2262.01	2287.24	2264.81	2209.38	2092.78		
Molecular Weight	19.79	24.14	40.18	41.04	40.54	39.94	—		
SO2 Emissions (ton/yr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Hours/Year	8760.00	8760.00	8760.00	8760.00	8760.00	8760.00	—		
Volumetric Flow (scf/hr)	65.00	320.00	1354.27	216.71	28.31	64.00	2048.29		
Heat Release (MMBtu/yr)	0.07	0.45	3.06	0.50	0.06	0.14	4.29		

Criteria Pollutant Emissions from Combustor ^d			
Component	Emission Rate	Emission Factor	Emission Factor Units
	(ton/year)		
NO _x	2.59	0.138	lb/MMBtu
CO	5.17	0.2755	lb/MMBtu
SO ₂	0.00	--	--
PM ₁₀	0.07	7.60	lb/MMscf
PM _{2.5}	0.07	7.60	lb/MMscf
H ₂ S	0.00	--	--

Storage Tank Vapor Controls	
Combustor Destruction Efficiency	98%

Footnotes:

a Uncontrolled stream properties determined via ProMax.

b Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature. Truck loading vapors are routed to the LP combustor.

c Pilot fuel gas emissions are calculated based on a 65 scfh flow rate.

d Compressor Rod Packing is routed to the LP Combustor to minimize venting. 40 scfh per unit is assumed to go to the LP Combustor.

e Flare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. The combustor VOC destruction efficiency is 98% per manufacturer specifications

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
EMERGENCY HP FLARE HOURLY EMISSIONS - NORMAL OPERATIONS

EMERGENCY HP FLARE HOURLY - NORMAL OPERATIONS

Component	Maximum Hourly Emission Rates and Composition to Flare ^{a,b}								Criteria Pollutant Emissions from Combustor ^c				
	Pilot & Purge - Normal Operations ^b	Pigging - Upset Conditions ^c	Compressor Blowdown ^d	Slug Catcher Recycle Valve Failure - Emergency Condition ^f	Total	Destruction Efficiency	Flare Exhaust (controlled)			Component	Emission Rate	Emission Factor	Emission Factor Units
								(lb/hr)	(lb/hr)				
Triethylene Glycol	0.00	0.01	0.00	0.00	0.01	0%	0.01			NO _x	277.14	0.138	lb/MMBtu
Carbon Dioxide	0.27	6.25	3.75	1281.93	1292.20	0%	1292.20			CO	553.28	0.2755	lb/MMBtu
Nitrogen	1.07	0.37	4.75	1616.82	1623.01	0%	1623.01			SO ₂	0.00	--	--
Methane	17.12	27.87	114.57	39045.76	39205.33	98%	784.11			PM ₁₀	10.81	7.60	lb/MMscf
Ethane	5.02	31.04	57.30	19674.17	19767.52	98%	395.35			PM _{2.5}	10.81	7.60	lb/MMscf
Propane	2.31	27.00	38.69	13445.44	13513.45	98%	270.27			H ₂ S	0.00	--	--
Isobutane	0.17	4.29	6.34	2237.52	2248.32	98%	44.97						
n-Butane	0.43	14.79	17.05	6086.52	6118.78	98%	122.38						
Isopentane	0.08	3.74	4.52	1665.03	1673.37	98%	33.47						
n-Pentane	0.09	6.03	6.53	2444.42	2457.08	98%	49.14						
n-Hexane	0.01	1.67	1.96	818.69	822.32	98%	16.45						
Cyclohexane	0.00	0.12	0.09	38.62	38.83	98%	0.78						
i-C6	0.01	2.17	2.53	1020.68	1025.39	98%	20.51						
iC7	0.01	2.12	2.49	1166.09	1170.71	98%	23.41						
Methylcyclohexane	0.00	0.05	0.05	23.95	24.05	98%	0.48						
n-Octane	0.00	0.23	0.31	221.66	222.20	98%	4.44						
Nonane	0.00	0.01	0.02	23.66	23.69	98%	0.47						
Benzene	0.00	0.45	0.19	77.41	78.04	98%	1.56						
Toluene	0.00	0.20	0.11	55.19	55.49	98%	1.11						
Ethylbenzene	0.00	0.01	0.01	5.14	5.16	98%	0.10						
o-Xylene	0.00	0.03	0.02	20.88	20.94	98%	0.42						
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0%	0.00						
Water	0.00	1.03	0.32	276.69	278.05	0%	278.05						
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	98%	0.00						
Decanes Plus	0.00	0.00	0.00	0.01	0.01	98%	0.00						
Total	26.59	129.47	261.59	91246.28	91663.94	--	4962.67						
Total VOC	3.12	62.90	80.89	29350.91	29497.83	--	589.96						
Total HAP	0.01	2.35	2.28	977.31	981.95	--	19.64						
Heating Value (Btu/scf)	1153.46	1721.39	1397.13	1411.24	1411.45								
Molecular Weight	19.79	31.30	24.14	24.44	—								
SO ₂ Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00								
Hours/Year	8760.00	156.00	288.00	—	—								
Volumetric Flow (scf/hr)	510.00	1569.61	4113.00	1.42E+06	1.42E+06								
Heat Release (MMBtu/hr)	0.59	2.70	5.75	1999.25	2008.29								

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^b Pilot & Purge fuel gas emissions are calculated based on a 510 scfh flow rate. Two pilots at 65 scf/hr and purge at 380 scf/hr.

^c During normal operations, the dehy flash tanks are routed back to suction at the slug catcher. However, during pigging events, it is possible that the pressure of the slug catcher will exceed the pressure of the flash tank. In this case the vapors of the flash tank may be routed to the emergency HP flare. Although this is not expected to occur on a frequent basis, three one hour events per week are included to be conservative.

^d Compressor blowdowns are routed to inlet suction or the Emergency HP flare. Three blowdown events per month per compressor is included.

^e Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

^f Hourly Rates Include Instantaneous Flow Rates; the maximum design rate for instantaneous flow rate is 34 MMSCFD during Slug Catcher Recycle Valve Failure. Expected duration is less than 5 minutes, and is only expected to occur in the event of an emergency.

NESSON GATHERING SYSTEM, LLC
FLICKERTAIL COMPRESSOR STATION
EMERGENCY HP FLARE ANNUAL EMISSIONS - NORMAL OPERATIONS

EMERGENCY HP FLARE ANNUAL - NORMAL OPERATIONS

Component	Maximum Annual Emission Rates and Composition to Flare ^{a,b}					
	Pilot & Purge- Normal Operations ^b	Pigging - Upset Conditions ^c	Compressor Blowdown ^d	Total	Destruction Efficiency	Flare Exhaust (controlled)
	(ton/year)	(ton/year)	(ton/year)	(ton/year)	(%)	(ton/year)
Triethylene Glycol	0.00	0.00	0.00	0.00	0%	0.00
Carbon Dioxide	1.18	0.49	0.54	2.21	0%	2.21
Nitrogen	4.68	0.03	0.68	5.39	0%	5.39
Methane	75.00	2.17	16.50	93.67	98%	1.87
Ethane	21.97	2.42	8.25	32.64	98%	0.65
Propane	10.13	2.11	5.57	17.80	98%	0.36
Isobutane	0.76	0.33	0.91	2.01	98%	0.04
n-Butane	1.87	1.15	2.46	5.48	98%	0.11
Isopentane	0.35	0.29	0.65	1.29	98%	0.03
n-Pentane	0.41	0.47	0.94	1.82	98%	0.04
n-Hexane	0.06	0.13	0.28	0.47	98%	0.01
Cyclohexane	0.00	0.01	0.01	0.02	98%	0.00
i-C6	0.04	0.17	0.36	0.58	98%	0.01
iC7	0.02	0.17	0.36	0.55	98%	0.01
Methylcyclohexane	0.00	0.00	0.01	0.01	98%	0.00
n-Octane	0.00	0.02	0.04	0.06	98%	0.00
Nonane	0.00	0.00	0.00	0.00	98%	0.00
Benzene	0.00	0.03	0.03	0.07	98%	0.00
Toluene	0.00	0.02	0.02	0.03	98%	0.00
Ethylbenzene	0.00	0.00	0.00	0.00	98%	0.00
o-Xylene	0.00	0.00	0.00	0.01	98%	0.00
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0%	0.00
Water	0.00	0.08	0.05	0.13	0%	0.13
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	98%	0.00
Decanes Plus	0.00	0.00	0.00	0.00	98%	0.00
Total	116.48	10.10	37.67	164.25	--	10.86
Total VOC	13.65	4.91	11.65	30.21	--	0.60
Total HAP	0.06	0.18	0.33	0.58	--	0.01
Heating Value (Btu/scf)	1153.46	1721.39	1397.13	1459.25		
Molecular Weight	19.79	31.30	24.14	--		
SO2 Emissions (lb/hr)	0.00	0.00	0.00	0.00		
Hours/Year	8760.00	156.00	288.00	--		
Annualized Vol. Flow (scf/hr)	510.00	27.95	135.22	673.17		
Volumetric Flow (MMscf/yr)	4.47	0.24	1.18	5.90		
Heat Release (MMBtu/hr)	0.59	0.05	0.19	0.83		

Component	Criteria Pollutant Emissions from Combustor ^e		
	Emission Rate	Emission Factor	Emission Factor Units
	(ton/year)		
NO _x	0.50	0.138	lb/MMBtu
CO	1.00	0.2755	lb/MMBtu
SO ₂	0.00	--	--
PM ₁₀	0.02	7.60	lb/MMscf
PM _{2.5}	0.02	7.60	lb/MMscf
H ₂ S	0.00	--	--

Storage Tank Vapor Controls	
Combustor Destruction Efficiency	98%

Combustion Emissions From Flare ^f				
	Pilot & Purge - Normal Operations	Pigging - Upset Conditions	Compressor Blowdown	Total
	(ton/year)	(ton/year)	(ton/year)	(ton/year)
Total NOx	0.36	0.03	0.11	0.50
Total CO	0.71	0.06	0.23	1.00
Total PM10 & 2.5	0.02	0.00	0.00	0.02

Footnotes:

a Uncontrolled stream properties determined via ProMax.

bPilot & Purge fuel gas emissions are calculated based on a 510 scf flow rate. Two pilots at 65 scf/hr and purge at 380 scf/hr.

cDuring normal operations, the dehy flash tanks are routed back to suction at the slug catcher. However, during pigging events, it is possible that the pressure of the slug catcher will exceed the pressure of the flash tank. In this case the vapors of the flash tank may be routed to the emergency HP flare. Although this is not expected to occur on a frequent basis, three one hour events per week are included to be conservative.

dCompressor blowdowns are routed to inlet suction or the Emergency HP flare. Three blowdown events per month per compressor is included.

e Flare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H₂S to SO₂.

Attachment # 9
Air Dispersion Modeling

Air Dispersion Modeling Analysis
XTO Energy, Inc.
Flickertail and Rough Rider Compressor Stations
Williams County, North Dakota

March 2025

Prepared by:
FC&E Engineering, LLC
917 Marquette Road
Brandon, MS 39047

Contents

1.0 Introduction	1
1.1 Summary	1
1.2 Facility Identification and Location	1
1.3 Process Description	2
2.0 Model Setup	2
2.1 Models and Model Versions	2
2.2 Receptor Network	2
2.3 Elevation Data	2
2.4 Meteorological Data	3
2.5 Emission Rates and Source Parameters	3
2.6 NO ₂ Conversion	3
2.7 Downwash	3
2.8 Model Control Options	4
2.9 Source Options	4
3.0 Significant Impact Analysis	4
4.0 Cumulative Impact Analysis	4
4.1 Monitored Background and Ambient Air Quality Standards	5
4.2 Surrounding Sources	5
4.3 Modeled Impact	5
5.0 Conclusion	5
6.0 Modeling Files	5

Tables

- Table 1- Emission Source Parameters - Rough Rider Compressor Station
- Table 2 - Emission Source Parameters - Flickertail Compressor Station
- Table 3 - Receptor Network
- Table 4 - Surrounding Source Inventory
- Table 5 - Significant Impact Results
- Table 6 - Ambient Air Quality Standards
- Table 7 - Cumulative Impacts
- Table 8 - File Key

Figures

- Figure 1 - Facility Location
- Figure 2 - Source Layout Flickertail Compressor Station
- Figure 3 - Source Layout - Rough Rider Compressor Station
- Figure 4 - SIA Receptor Network
- Figure 5 - Rough Rider 1-hr NO2 SIA
- Figure 6 - Flickertail 1-hr NO2 SIA
- Figure 7 - Rough Rider NO2 Annual SIA
- Figure 8 - Flickertail NO2 Annual SIA

1.0 Introduction

1.1 Summary

XTO Energy, Inc. (XTO) is submitting an air permit application to modify emission factors and permitted emissions of two compressor stations, Flickertail Compressor Station and Rough Rider Compressor Station, which are in Williams County, ND. The two compressor stations are identical minor sources. The compressor stations are separated by approximately 10 km. A single analysis was performed due to the proximity of the sources and the shared surrounding sources.

The emissions change request does not exceed the thresholds for projects not subject to PSD contained in the October 2, 2016, NDDEQ memo “Criteria Pollutant Modeling Requirements for a Permit to Construct.” NDDEQ has requested, however, that the NO₂ impacts from the facility be evaluated. The analysis followed the methodology of the modeling conducted in 2020, except as noted in this report. No protocol was submitted prior to the analysis.

Heaters and reboilers were not included in the 2020 initial analysis for the facility following the January 23, 2015, State issued guidance regarding Dispersion Modeling Requirements, Compressor Engines and Glycol Dehydration Units. The guidance was rescinded December 18, 2023. Glycol reboilers and heaters were, therefore, included in this analysis.

The initial analysis did not include the emergency flare. Emergency flares are exempt from the NAAQS analysis per the October 6, 2014, NDDEQ guidance “Air Dispersion Modeling Emergency Engines/Flares.” Flare emissions not attributable to emergencies were included in the analysis, i.e., pilot & purge normal operations, pigging upset conditions and compressor blowdown.

1.2 Facility Identification and Location

Flickertail and the Rough Rider Compressor Stations are in Williams County, ND at the following coordinates as shown in Figure 1. The emission source layout for each compressor station is depicted in Figure 2 and Figure 3.

Flickertail Compressor Station - UTM Coordinates (UTM Zone 13) with NAD83 Datum and an elevation of 1,888 feet above mean sea level:

UTME: 647,509.02 m
UTMN: 5,339,985.74 m

Lat: 48 degrees, 11 minutes, 45.40 seconds N
Lon: 103 degrees, 00 minutes, 53.81 seconds W

Rough Rider Compressor Station - UTM Coordinates (UTM Zone 13) with NAD83 Datum and an elevation of 1,973 feet above mean sea level:

UTME: 657,502.99 m
UTMN: 5,340,485.34 m

Lat: 48 degrees, 11 minutes, 52.92 seconds N
Lon: 102 degrees, 52 minutes, 49.34 seconds W

1.3 Process Description

The Flickertail and Rough Rider Compressor Stations are natural gas compressor stations with natural gas entering the stations through an inlet separator. The gas is then compressed and sent to two dehydration units that remove water (H_2O) from the gas to meet sales specifications. Associated BTEX emissions are combusted in a vapor combustor. The sites operate continuously (8760 hours per year).

2.0 Model Setup

2.1 Models and Model Versions

The analysis was conducted using the latest version of the US EPA preferred regulatory model for near field impacts, AERMOD (VERSION 24142). The preprocessor AERMAP (VERSION 24142) was used to determine hill heights for all receptors, buildings, and sources. The preprocessor BPIPPRM (VERSION 04274) was used to determine building downwash parameters.

The Lakes AERMOD – View Graphical User Interface (GUI) version 13.0.0 was used to develop the input files. The model was executed using US EPA executable files.

2.2 Receptor Network

Receptors were placed at 25-meter spacing along the fence line surrounding each facility. A cartesian coordinate system was used for the receptors outside the fence line. The spacing of the receptors varied based on the distance from the facility center as summarized in Table 3. Public access to the Flickertail and Rough Rider Compressor Stations is restricted by a fence. No receptors were placed within the fenced area.

The resulting receptor network is depicted in Figure 4.

2.3 Elevation Data

One-third arc second National Elevation Dataset (NED) files were downloaded from the USGS at <https://apps.nationalmap.gov/downloader/#/>. The files were converted to GeoTiff without data compression following the EPA guidance “Data Sources and Conversion of Elevation Data for AERMAP, Updated 4/7/2020.” The coverage of the NED files extends more than 10 km beyond the receptor network.

The NED files were processed in AERMAP and used to assign elevations to receptors, sources, and buildings.

2.4 Meteorological Data

Preprocessed meteorological data was provided by the NDDEQ for use in the analysis. The meteorological data covered the years 2019 to 2023 of surface data from KD60–Tioga Municipal Airport (Station ID: 00289) and upper air data from KBIS-Bismarck Municipal Airport; Station ID: 24011.

The met data was processed with AERMET version 23132 using the ADJ_U* option to adjust surface friction velocity for low wind speed conditions.

2.5 Emission Rates and Source Parameters

All NO_x emissions from the facility are released through stacks and were modeled as point sources except for the flare which was modeled as a pseudo point source. The sources were modeled using the stack parameters and emissions presented in the application. The modeled source parameters are summarized in Table 1 and Table 2 for the Rough Rider and Flickertail Compressor Stations, respectively.

The November 10, 2010, NDDEQ guidance “Model Input for Flares” was used to determine the pseudo stack parameters for the flare. The exit velocity was set at 40 m/s, the stack temperature was set at 1000 K, and the effective stack height and diameter were calculated using equation (5) and (6) of the NDDEQ guidance.

The total combined heat release for the pilot & purge, pigging, and compressor blowdown of 9.04 MMBtu/hr was used to determine the effective diameter and effective height as:

$$Ds = 7.29 \times 10^{-4} [0.45 \times 9.04 \text{ MMBu/hr} \times 70,045.56 \text{ (cal/s)/(MMBu/hr)}]^{0.5}$$
$$= 0.3891 \text{ meters}$$

$$h_f = 4.56 \times 10^{-3} [9.04 \text{ MMBu/hr} \times 70,045.56 \text{ (cal/s)/(MMBu/hr)}]^{0.478}$$
$$= 2.7041 \text{ meters}$$

$$H_e = 24.384 \text{ m} + 2.7041 \text{ m} = 27.0881 \text{ m}$$

2.6 NO₂ Conversion

The significant and cumulative impact analyses were performed using the Ambient Ratio Method Version 2 (ARM2) to account for the conversion of NO_x to NO₂. The default upper and lower limits on the ambient ratio applied to the modeled NO_x concentration of 0.9 and 0.5, respectively, were used.

2.7 Downwash

A single structure, the compressor building, was included in the downwash analysis for each facility. The Building Profile Input Program (BPIP) with the PRIME algorithms was used to determine the building downwash parameters input for AERMOD.

2.8 Model Control Options

The model was run with the DEFAULT model option to ensure regulatory default options were selected, CONC to indicate a concentration output, NODRYDPLT and NOWETDPLT to ensure plume depletion was not used and ARM2 to account for the conversion of NOx to NO2. The regulatory default ambient ratios of 0.5 for the minimum and 0.9 for the maximum were used.

2.9 Source Options

All the sources were modeled as point sources using the POINT source options except for one surrounding source emission unit which was modeled using the POINTHOR source option.

The SOURCGRP options was used to group the individual facilities. A source group ALL was also included to determine the combined impact of all facilities.

3.0 Significant Impact Analysis

The significant impact analysis was performed in a single modeling run including both the Flickertail and Rough Rider Compressor Stations. All NOx emitting sources at each facility were included in the analysis. The impacts of each facility were determined by using source groups containing individual facility's emission sources.

The significant impact area was determined as the circular area with a radius from the facility center to the most distance receptor exceeding the significance level, plus the receptor spacing at the most distant.

For the NO₂ 1-hr averaging period the 1st-highest Max daily 1-hr value, averaged over 5 years, was compared to the modeling significance level of 7.5 ug/m³ to determine if the significance level was exceeded at the receptor. For the NO₂ annual averaging period, the highest annual average of the 5 years modeled was compared to the modeling significance level of 1 ug/m³ to determine if the significance level was exceeded at the receptor.

Table 5 summarizes the significant impact analysis for the two facilities. Figure 5 through Figure 8 show the area of significant impact determined for each compressor station and averaging period.

4.0 Cumulative Impact Analysis

The cumulative impact analysis consisted of modeling the proposed facility emissions, surrounding sources provided by NDDEQ and adding a monitored background value. The cumulative impacts were determined within the area where the Rough Rider or Flickertail Compressor Stations produce modeled impacts above the significant impact area as described in Section 3.

4.1 Monitored Background and Ambient Air Quality Standards

The monitored background and Ambient Air Quality Standards are summarized in Table 6, as posted on the NDDEQ website at <https://deq.nd.gov/AQ/Modeling/> under AAQS Modeling Values (5 Years of NWS MET).

4.2 Surrounding Sources

The surrounding source inventory provided by the NDDEQ is summarized in Table 4. Each facility is denoted by an alphabetical prefix. Source groups were created for each surrounding source facility using the same prefix to determine the surrounding facility impact to any modeled exceedances.

4.3 Modeled Impact

The maximum modeled 8th highest max daily 1-hr value averaged over 5 years and the maximum modeled annual impact of the five years occurred at the fence line of the Rough Rider Compressor Station. The maximum annual average impact occurred in the modeled year 2020.

Modeled impacts above 50% of the standard were within 1,500 meters of the center of the Flickertail or Rough Rider Compressor Stations within 100-meter grid spacing. The maximum modeled impacts were within 100-meter spacing and no further refinement was made to the cumulative receptor grid.

5.0 Conclusion

The cumulative impacts from the proposed facility, surrounding sources and monitored background were below the North Dakota and National Ambient Air Quality Standards. The operations of the Flickertail and Rough Rider Compressor Stations, therefore, do not cause or contribute to any exceedance of the NO₂ air quality standards. This air quality analysis demonstrates compliance with the applicable regulatory requirements.

6.0 Modeling Files

The modeling files have been provided in the following zip files

- NO2.zip – significant impact analysis
- NO2 CIA.zip – cumulative impact analysis

The files within the zipped files are named according to the Lakes AERMOD-View naming convention. Table 8 contains a description of the files.

Due to the size, the NED terrain files have not been included but can be provided if requested. The files downloaded from the USGS and used in the analysis are listed below:

- USGS_13_n48w103_20240723.tif
- USGS_13_n48w104_20241024.tif
- USGS_13_n49w103_20241024.tif
- USGS_13_n49w104_20241024.tif

TABLES

TABLE 1- EMISSION SOURCE PARAMETERS - ROUGH RIDER COMPRESSOR STATION

Release Type	Model ID	Description	Base Elevation (m)	Height (m)	Diameter (m)	Velocity (m/s)	Temp (K)	Release Orientation	Emission Rate (g/s)	UTM-x (m)	UTM-y (m)
POINT	RRENG1	Caterpillar G3608 TALE Compressor Engine	602.4	9.27	0.612	24.64	658.15	VERTICAL	0.278	657514.00	5340459.76
POINT	RRENG2	Caterpillar G3608 TALE Compressor Engine	602.28	9.27	0.612	24.64	658.15	VERTICAL	0.278	657528.07	5340459.80
POINT	RRENG3	Caterpillar G3608 TALE Compressor Engine	602.11	9.27	0.612	24.64	658.15	VERTICAL	0.278	657541.22	5340459.76
POINT	RRENG4	Caterpillar G3608 TALE Compressor Engine	601.96	9.27	0.612	24.64	658.15	VERTICAL	0.278	657554.31	5340460.69
POINT	RRENG5	Caterpillar G3608 TALE Compressor Engine	601.79	9.27	0.612	24.64	658.15	VERTICAL	0.278	657566.96	5340460.69
POINT	RRENG6	Caterpillar G3608 TALE Compressor Engine	601.68	9.27	0.612	24.64	658.15	VERTICAL	0.278	657581.62	5340461.27
POINT	RRENG7	Caterpillar G3608 TALE Compressor Engine	601.42	9.27	0.612	24.64	658.15	VERTICAL	0.278	657595.32	5340461.29
POINT	RRENG8	Caterpillar G3608 TALE Compressor Engine	601.33	9.27	0.612	24.64	658.15	VERTICAL	0.278	657609.37	5340461.29
POINT	RRLPCOMB	Low Pressure Combustor Normal Operations	599.13	4.57	0.762	0.00	533.15	VERTICAL	0.001	657599.64	5340534.35
POINT	RRCOMB	Teg Dehy Combustor Combined Still Column Emissions	598.69	12.19	2.134	0.04	322.04	VERTICAL	0.075	657678.84	5340491.42
POINT	RRHPFLR	Emergency Flare	599.87	27.09	0.389	40.00	1000.00	VERTICAL	0.157	657452.99	5340557.27
POINT	RRHTR1	Dehy Reboiler 0.75 Mmbtu/Hr Burner	599.37	3.66	0.406	0.22	477.59	VERTICAL	0.013	657545.00	5340539.00
POINT	RRHTR2	Dehy Reboiler 0.75 Mmbtu/Hr Burner	599.46	3.66	0.406	0.22	477.59	VERTICAL	0.013	657545.00	5340536.00
POINT	RRHTR3	Fuel Membrane Heater 2.5 Mmbtu/Hr Burner	599.54	4.57	0.610	0.06	699.82	VERTICAL	0.044	657547.00	5340533.00
English Units											
Release Type	Model ID	Description	Base Elevation (ft)	Height (ft)	Diameter (ft)	Velocity (ft/s)	Temp (F)	Release Orientation	Emission Rate (lb/hr)	UTM-x (m)	UTM-y (m)
POINT	RRENG1	Caterpillar G3608 TALE Compressor Engine	1976	30.41667	2.0	80.8	725	VERTICAL	2.2	657514.00	5340459.76
POINT	RRENG2	Caterpillar G3608 TALE Compressor Engine	1976	30.41667	2.0	80.8	725	VERTICAL	2.2	657528.07	5340459.80
POINT	RRENG3	Caterpillar G3608 TALE Compressor Engine	1975	30.41667	2.0	80.8	725	VERTICAL	2.2	657541.22	5340459.76
POINT	RRENG4	Caterpillar G3608 TALE Compressor Engine	1975	30.41667	2.0	80.8	725	VERTICAL	2.2	657554.31	5340460.69
POINT	RRENG5	Caterpillar G3608 TALE Compressor Engine	1974	30.41667	2.0	80.8	725	VERTICAL	2.2	657566.96	5340460.69
POINT	RRENG6	Caterpillar G3608 TALE Compressor Engine	1974	30.41667	2.0	80.8	725	VERTICAL	2.2	657581.62	5340461.27
POINT	RRENG7	Caterpillar G3608 TALE Compressor Engine	1973	30.41667	2.0	80.8	725	VERTICAL	2.2	657595.32	5340461.29
POINT	RRENG8	Caterpillar G3608 TALE Compressor Engine	1973	30.41667	2.0	80.8	725	VERTICAL	2.2	657609.37	5340461.29
POINT	RRLPCOMB	Low Pressure Combustor Normal Operations	1966	15	2.5	0.0	500	VERTICAL	0.01	657678.84	5340491.42
POINT	RRCOMB	Teg Dehy Combustor Combined Still Column Emissions	1964	40	7	0.1	120	VERTICAL	0.59	657599.64	5340534.35
POINT	RRHPFLR	Emergency Flare	1968	88.9	1.3	131.2	1340	VERTICAL	1.25	657452.99	5340557.27
POINT	RRHTR1	Dehy Reboiler 0.75 Mmbtu/Hr Burner	1966	12	1.333	0.7	399.67	VERTICAL	0.11	657545.00	5340539.00
POINT	RRHTR2	Dehy Reboiler 0.75 Mmbtu/Hr Burner	1967	12	1.333	0.7	399.67	VERTICAL	0.11	657545.00	5340536.00
POINT	RRHTR3	Fuel Membrane Heater 2.5 Mmbtu/Hr Burner	1967	15	2	0.2	799.67	VERTICAL	0.35	657547.00	5340533.00

TABLE 2 - EMISSION SOURCE PARAMETERS - FLICKERTAIL COMPRESSOR STATION

Release Type	Model ID	Description	Base Elevation (m)	Height (m)	Diameter (m)	Velocity (m/s)	Temp (K)	Release Orientation	Emission Rate (g/s)	UTM-x (m)	UTM-y (m)
POINT	FTENG1	Caterpillar G3608 TALE Compressor Engine	575.46	9.27	0.612	24.64	658.15	VERTICAL	0.278	647536.61	5339999.23
POINT	FTENG2	Caterpillar G3608 TALE Compressor Engine	575.92	9.27	0.612	24.64	658.15	VERTICAL	0.278	647549.24	5339997.13
POINT	FTENG3	Caterpillar G3608 TALE Compressor Engine	576.32	9.27	0.612	24.64	658.15	VERTICAL	0.278	647562.84	5339995.07
POINT	FTENG4	Caterpillar G3608 TALE Compressor Engine	576.74	9.27	0.612	24.64	658.15	VERTICAL	0.278	647576.67	5339994.07
POINT	FTENG5	Caterpillar G3608 TALE Compressor Engine	577.13	9.27	0.612	24.64	658.15	VERTICAL	0.278	647590.39	5339991.97
POINT	FTENG6	Caterpillar G3608 TALE Compressor Engine	577.54	9.27	0.612	24.64	658.15	VERTICAL	0.278	647604.22	5339990.08
POINT	FTENG7	Caterpillar G3608 TALE Compressor Engine	577.91	9.27	0.612	24.64	658.15	VERTICAL	0.278	647617.60	5339988.28
POINT	FTENG8	Caterpillar G3608 TALE Compressor Engine	578.27	9.27	0.612	24.64	658.15	VERTICAL	0.278	647631.53	5339986.76
POINT	FTLPCOMB	Low Pressure Combustor Normal Operations	573.92	4.57	0.762	0.00	533.15	VERTICAL	0.001	647535.59	5339922.44
POINT	FTCOMB	Teg Dehy Combustor Combined Still Column Emissions	573.18	12.19	2.134	0.04	322.04	VERTICAL	0.075	647464.05	5339977.55
POINT	FTHPFLR	Emergency Flare	576.7	27.09	0.389	40.00	1000.00	VERTICAL	0.157	647673.62	5339888.14
POINT	FTHTR1	Dehy Reboiler 0.75 Mmbtu/Hr Burner	575.35	3.66	0.406	0.22	477.59	VERTICAL	0.013	647586.13	5339911.35
POINT	FTHTR2	Dehy Reboiler 0.75 Mmbtu/Hr Burner	575.54	3.66	0.406	0.22	477.59	VERTICAL	0.013	647586.37	5339917.65
POINT	FTHTR3	Fuel Membrane Heater 2.5 Mmbtu/Hr Burner	575.89	4.57	0.610	0.06	699.82	VERTICAL	0.044	647588.25	5339925.11

English Units

Release Type	Model ID	Description	Base Elevation (ft)	Height (ft)	Diameter (ft)	Velocity (ft/s)	Temp (F)	Release Orientation	Emission Rate (lb/hr)	UTM-x (m)	UTM-y (m)
POINT	FTENG1	Caterpillar G3608 TALE Compressor Engine	1888	30.41667	2.0	80.8	725	VERTICAL	2.2	657514.00	5340459.76
POINT	FTENG2	Caterpillar G3608 TALE Compressor Engine	1890	30.41667	2.0	80.8	725	VERTICAL	2.2	657528.07	5340459.80
POINT	FTENG3	Caterpillar G3608 TALE Compressor Engine	1891	30.41667	2.0	80.8	725	VERTICAL	2.2	657541.22	5340459.76
POINT	FTENG4	Caterpillar G3608 TALE Compressor Engine	1892	30.41667	2.0	80.8	725	VERTICAL	2.2	657554.31	5340460.69
POINT	FTENG5	Caterpillar G3608 TALE Compressor Engine	1893	30.41667	2.0	80.8	725	VERTICAL	2.2	657566.96	5340460.69
POINT	FTENG6	Caterpillar G3608 TALE Compressor Engine	1895	30.41667	2.0	80.8	725	VERTICAL	2.2	657581.62	5340461.27
POINT	FTENG7	Caterpillar G3608 TALE Compressor Engine	1896	30.41667	2.0	80.8	725	VERTICAL	2.2	657595.32	5340461.29
POINT	FTENG8	Caterpillar G3608 TALE Compressor Engine	1897	30.41667	2.0	80.8	725	VERTICAL	2.2	657609.37	5340461.29
POINT	FTLPCOMB	Low Pressure Combustor Normal Operations	1883	15	2.5	0.0	500	VERTICAL	0.01	657678.84	5340491.42
POINT	FTCOMB	Teg Dehy Combustor Combined Still Column Emissions	1881	40	7	0.1	120	VERTICAL	0.59	657599.64	5340534.35
POINT	FTHPFLR	Emergency Flare	1892	88.9	1.3	131.2	1340	VERTICAL	1.25	657452.99	5340557.27
POINT	FTHTR1	Dehy Reboiler 0.75 Mmbtu/Hr Burner	1888	12	1.333	0.7	399.67	VERTICAL	0.11	657545.00	5340539.00
POINT	FTHTR2	Dehy Reboiler 0.75 Mmbtu/Hr Burner	1888	12	1.333	0.7	399.67	VERTICAL	0.11	657545.00	5340536.00
POINT	FTHTR3	Fuel Membrane Heater 2.5 Mmbtu/Hr Burner	1889	15	2	0.2	799.67	VERTICAL	0.35	657547.00	5340533.00

TABLE 3 - RECEPTOR NETWORK

Distance from Facility Center	Spacing
Fenceline	25 m
From 0 to 1.5 km	100 m
From 1.5 to 3 km	250 m
From 3 to 6 km	500 m
From 6 to 12 km	1000 m

TABLE 4 - SURROUNDING SOURCE INVENTORY

EP ID	Source Description	Source Type	UTM X (m)	UTM Y (m)	Base Elevation (m)	Stack Height (f)	Exit Temperature (F)	Exit Velocity (f/s)	Exit Diameter (f)	NOx (lb/hr)
NGP1	Nesson Gas Plant - Engine#2	Vertical	645082.30	5358751.90	724.23	32.0	731	52.2	1.25	1.07
NGP2	Nesson Gas Plant - Engine#3	Vertical	645096.30	5358752.03	724.43	32.0	759	81.5	1.31	1.57
NGP3	Nesson Gas Plant - Engine#4	Vertical	645110.36	5358752.95	724.74	32.0	767	91.2	1.29	0.84
NGP4	Nesson Gas Plant - Engine#5	Vertical	645123.82	5358753.85	724.99	32.0	615	72.3	1.38	0.70
NGP5	Nesson Gas Plant - Engine#6	Vertical	645137.61	5358753.65	725.16	32.0	618	75.4	1.38	0.79
NGP6	Nesson Gas Plant - Heater#1	Vertical	645024.03	5358688.79	724.04	15.0	600	8.4	0.60	0.28
NGP7	Nesson Gas Plant - Heater#2	Vertical	645024.03	5358671.15	724.03	15.0	600	8.4	0.60	1.46
NGP8	Nesson Gas Plant - Oil Heater#1	Vertical	645108.01	5358665.03	725.59	15.0	1000	101.7	1.00	1.71
NGP9	Nesson Gas Plant - Oil Heater#2	Vertical	645108.01	5358665.03	725.59	15.0	1000	181.3	1.00	3.38
RG1	Whiting - Ray Gas Dehy Unit Flare	Vertical	639766.70	5357319.88	692.19	12.0	1273	27.1	0.33	0.53
RG2	Whiting - Ray Gas Hot Oil Heater	Vertical	639766.70	5357319.88	692.19	35.0	250	1.2	3.00	0.64
SC1	Hess - Silurian Compressor Engine#1	Vertical	651864.12	5350731.50	713.07	26.5	870	134.0	1.33	1.13
SC2	Hess - Silurian Compressor Engine#2	Vertical	651808.41	5351082.41	713.08	29.5	847	113.0	1.50	1.87
SC3	Hess - Silurian Compressor Heater	Vertical	651894.19	5350734.50	714.12	20.0	700	8.0	0.75	0.07
SC4	Hess - Silurian Compressor Reboiler	Vertical	651902.31	5350733.00	713.79	30.0	1000	8.0	0.67	0.07
EN1	Hess - East Nesson 1 Heater#1	Vertical	661709.11	5339518.38	634.55	10.0	1021	114.6	0.83	0.05
EN2	Hess - East Nesson 1 Heater#2	Vertical	661709.11	5339518.38	634.55	10.0	1021	114.6	0.83	0.15
ORC1	ONEOK - Riverside Compressor Engine#1	Vertical	662112.78	5324644.86	684.92	30.0	1078	130.3	1.34	0.60
ORC2	ONEOK - Riverside Compressor Engine#2	Vertical	662128.42	5324645.64	684.49	30.0	950	120.8	1.34	1.71
ORC3	ONEOK - Riverside Compressor Engine#3	Vertical	662142.69	5324644.60	684.30	30.0	1066	134.0	1.34	1.91
ORC4	ONEOK - Riverside Compressor Engine#4	Vertical	662155.88	5324644.97	684.06	30.0	1089	138.5	1.50	1.50
ORC5	ONEOK - Riverside Compressor Engine#5	Vertical	662168.96	5324649.34	683.80	30.0	1100	149.2	1.50	2.93
ODL1	ONEOK - Demicks Lake Compressor Engine	Vertical	649066.33	5307509.13	710.51	20.0	984	107.6	0.70	13.07
ODL2	ONEOK - Demicks Lake Compressor Heater	Vertical	649059.59	5307515.40	710.80	10.0	400	5.3	1.00	0.08
ETB1	Energy Transfer - Brause Compressor Engine#1	Vertical	634549.83	5319173.33	606.05	25.8	834	69.7	1.33	1.19
ETB2	Energy Transfer - Brause Compressor Engine#2	Horizontal	634549.83	5319173.33	606.05	25.8	834	69.7	1.33	1.17
ETB3	Energy Transfer - Brause Compressor Engine#3	Vertical	634549.83	5319173.33	606.05	22.5	813	113.0	1.50	1.13
ETB4	Energy Transfer - Brause Compressor Engine#4	Vertical	634549.83	5319173.33	606.05	25.8	834	97.4	1.33	0.76
ETB5	Energy Transfer - Brause Compressor Engine#5	Vertical	634549.83	5319173.33	606.05	25.8	834	97.4	1.33	0.77
ETB6	Energy Transfer - Brause Compressor Engine#8	Vertical	634549.83	5319173.33	606.05	25.8	834	97.4	1.33	1.18
ETB7	Energy Transfer - Brause Compressor Engine#10	Vertical	634549.83	5319173.33	606.05	25.8	834	97.4	1.33	1.33
GCB1	Grayson - Central Banks CDP Compressor Engine#1	Vertical	631877.00	5317243.00	662.40	12.0	958	88.8	1.33	0.32
GCB2	Grayson - Central Banks CDP Compressor Engine#2	Vertical	631886.00	5317244.00	662.17	12.0	947	85.2	1.33	0.87
GCB3	Grayson - Central Banks CDP Compressor Engine#3	Vertical	631898.00	5317244.00	662.38	12.0	866	70.2	1.33	0.56
GCB4	Grayson - Central Banks CDP Compressor Engine#4	Vertical	631908.00	5317245.00	662.36	12.0	955	108.9	1.17	0.52
GCB5	Grayson - Central Banks CDP Compressor Engine#5	Vertical	631922.00	5317245.00	662.05	12.0	908	97.1	1.17	1.28
GCB6	Grayson - Central Banks CDP Compressor Engine#24	Vertical	631905.00	5317165.00	656.36	12.0	866	145.0	1.00	1.09
GCB7	Grayson - Central Banks CDP Compressor Engine#25	Vertical	631899.00	5317165.00	656.44	12.0	850	146.0	1.00	1.00
GCB8	Grayson - Central Banks CDP Compressor Engine#26	Vertical	631892.00	5317165.00	656.49	12.0	749	83.4	1.67	1.59
ETN1	Energy Transfer - North Compressor Engine#1	Vertical	634248.68	5314754.63	603.98	27.5	1091	26.9	1.50	1.45
ETN2	Energy Transfer - North Compressor Engine#3	Vertical	634248.68	5314754.63	603.98	27.5	1259	44.9	1.50	1.44
ETN3	Energy Transfer - North Compressor Engine#4	Vertical	634248.68	5314754.63	603.98	27.5	1276	55.1	1.33	1.01
ETN4	Energy Transfer - North Compressor Engine#5	Vertical	634248.68	5314754.63	603.98	27.5	1083	33.2	1.33	1.40
ETN5	Energy Transfer - North Compressor Engine#6	Vertical	634248.68	5314754.63	603.98	27.5	1123	34.9	1.33	1.24
ETN6	Energy Transfer - North Compressor Engine#7	Vertical	634248.68	5314754.63	603.98	27.5	1158	36.1	1.33	1.19
ETN7	Energy Transfer - North Compressor Engine#8	Vertical	634248.68	5314754.63	603.98	27.5	1168	35.6	1.33	0.94
ETN8	Energy Transfer - North Compressor Engine#10	Vertical	634248.68	5314754.63	603.98	27.5	1089	34.2	1.33	1.18
HPR1	Hiland Partners - 4Runner Compressor Engine#1	Vertical	619729.84	5323844.03	582.90	40.0	795	108.1	1.13	0.43
HPR2	Hiland Partners - 4Runner Compressor Engine#2	Vertical	619729.84	5323844.03	582.90	40.0	821	93.4	1.10	1.11
HPR3	Hiland Partners - 4Runner Compressor Engine#3	Vertical	619729.84	5323844.03	582.90	40.0	853	95.4	1.10	1.46
HPR4	Hiland Partners - 4Runner Compressor Engine#4	Vertical	619729.84	5323844.03	582.90	40.0	667	78.4	1.67	2.05
HPR5	Hiland Partners - 4Runner Compressor Engine#5	Vertical	619729.84	5323844.03	582.90	40.0	663	87.2	1.67	2.14
HPR6	Hiland Partners - 4Runner Compressor Engine#6	Vertical	619729.84	5323844.03	582.90	40.0	943	115.9	1.13	1.98
HPR7	Hiland Partners - 4Runner Compressor Reboiler	Vertical	619729.84	5323844.03	582.90	32.0	400	9.3	1.00	0.10

TABLE 5 - SIGNIFICANT IMPACT RESULTS

Facility	Pollutant	Averaging Period	SIL ($\mu\text{g}/\text{m}^3$)	Maximum Concentration ($\mu\text{g}/\text{m}^3$)	Significant? (Y/N)	ROI (km)
Rough Rider	NO_2	1-hr	7.5	151.32488	Y	14.567
		Annual	1	22.5565	Y	1.266
		1-hr	7.5	147.13223	Y	14.596
		Annual	1	19.49989	Y	1.348

TABLE 6 - AMBIENT AIR QUALITY STANDARDS

Pollutant	Averaging Period	SIL	Background	North Dakota	Federal
		$\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$	$\mu\text{g}/\text{m}^3$
NO_2	1-hr	7.5	35	188	188
NO_2	Annual	1	5	100	100

TABLE 7 - CUMULATIVE IMPACTS

Pollutant, Time Period and Standard	Background Concentration ($\mu\text{g}/\text{m}^3$)	Cumulative Modeled Concentration ($\mu\text{g}/\text{m}^3$)	Cumulative Concentration ($\mu\text{g}/\text{m}^3$)	Value of Standard ($\mu\text{g}/\text{m}^3$)	Percent of Standard	Location		
						UTM E (m)	UTM N (m)	Elevation (m)
NO ₂ Annual Avg NAAQS/NDAAQS	5	22.67	34.67	100	34.7%	657623.87	5340410.84	609.97
NOx 1-hr (H8H) NAAQS/NDAAQS	35	139.53	174.53	188	92.8%	657472.51	5340579.40	598.75

TABLE 8 - FILE KEY

Significant Impact Analysis - NO2.zip		
File	Description	Note
NO2.ADI	AERMOD Input File	
NO2.ADO	AERMOD Output File	
NO2.api	AERMAP Input File	
NO2.ast	AERMAP Input File	
NO2.bpi	BPIP Input File	
NO2.pro	BPIP Output File	
NO2.sup	BPIP Processing File	
NO2.AD/	Plot File Folder	
Plot file Format	[xx-Avg Period]	01=1hr avg period, AN=Multiyear Annual Average
	[xx-Rank]	H1-1st high, H8=8th high
	[XXX-Group].PLT	G001 = Rough Rider Sources, G002 = Flickertail Sources, ALL = All sources
ANNUAL_G001.PLT	Individual annual average source group ALL	
ANNUAL_G002.PLT	Individual annual average source group Rough Rider	
ANNUAL_G003.PLT	Individual annual average source group Flickertail	
Cumulative Analysis - NO2 CIA.zip		
NO2 CIA.zip		
NO2 CIA.ADI	AERMOD Input File	
NO2 CIA.ADO	AERMOD Output File	
Plot file Format	[xx -Avg Period]	01=1hr avg period, AN=Multiyear Annual Average
	[xx-Rank]	H1-1st high, H8=8th high
	[XXX-Group].PLT	G021 = Rough Rider Sources, G012 = Flickertail Sources, ALL = All sources
ANNUAL_G001.PLT	Individual annual average source group ALL	
ANNUAL_G012.PLT	Individual annual average source group Rough Rider	
ANNUAL_G013.PLT	Individual annual average source group Flickertail	

FIGURES

FIGURE 1 - FACILITY LOCATION

FIGURE 2 - SOURCE LAYOUT FLICKERTAIL COMPRESSOR STATION

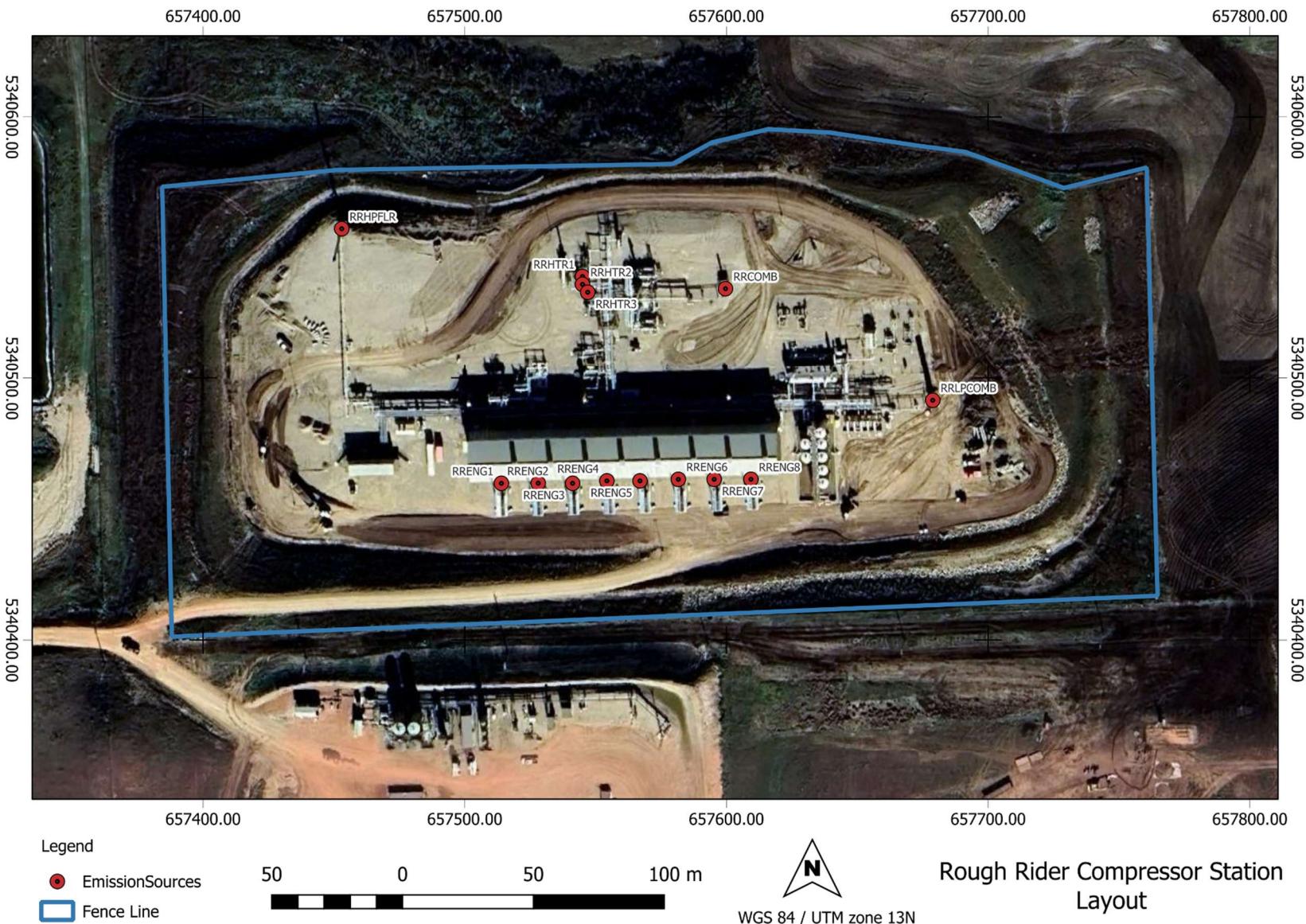


FIGURE 3 - SOURCE LAYOUT - ROUGH RIDER COMPRESSOR STATION

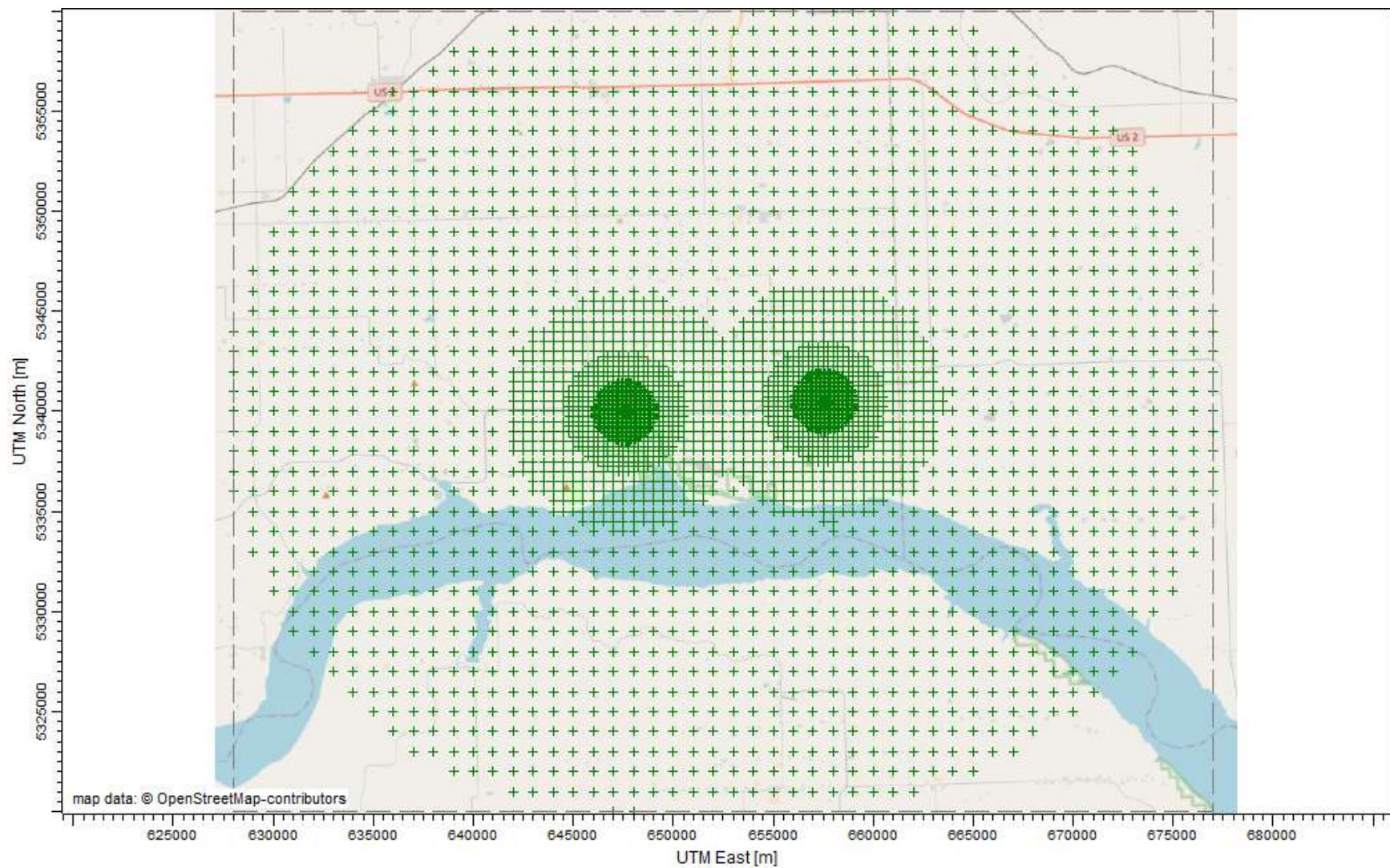


FIGURE 4 - SIA RECEPTOR NETWORK

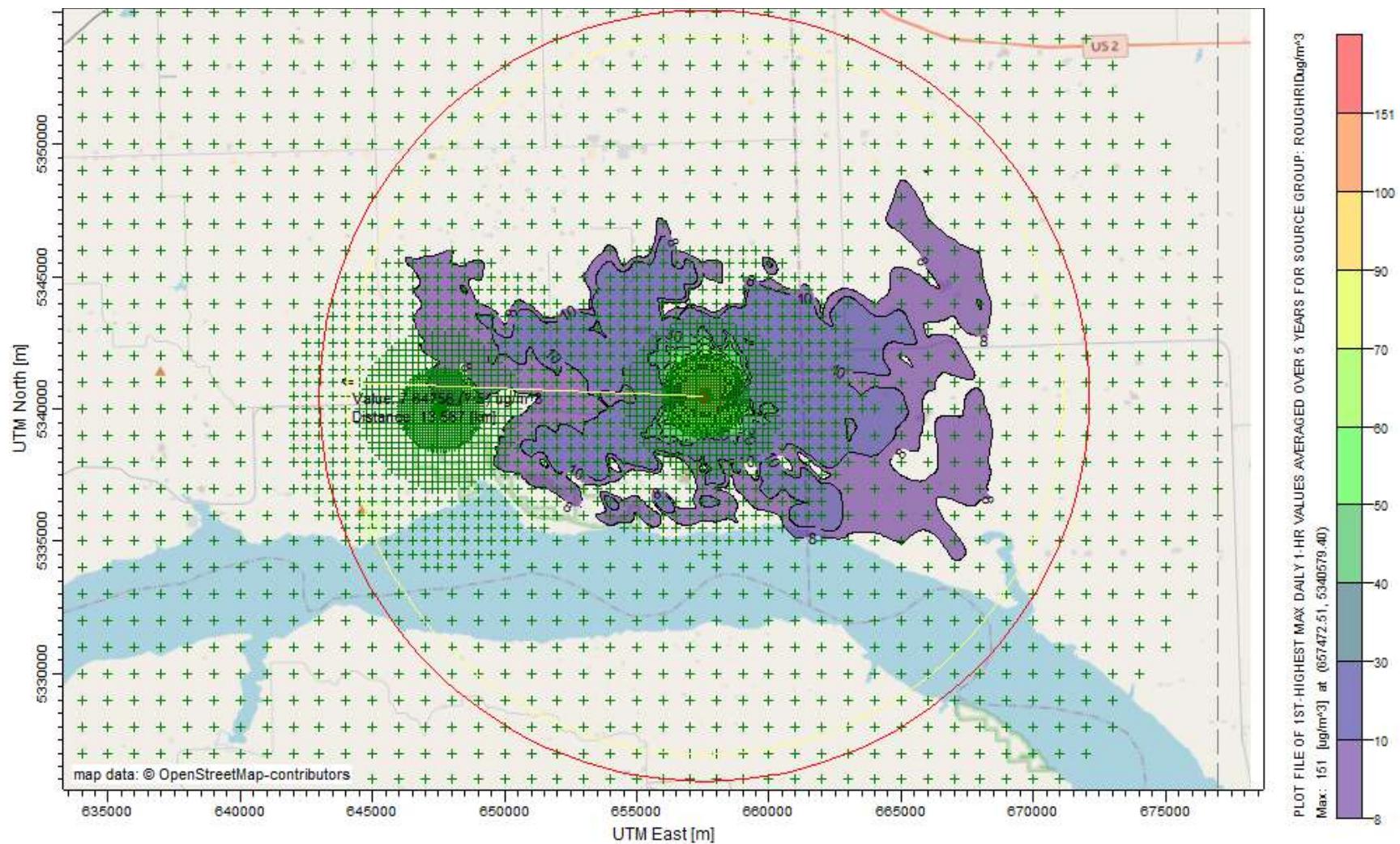


FIGURE 5 - ROUGH RIDER 1-HR NO₂ SIA

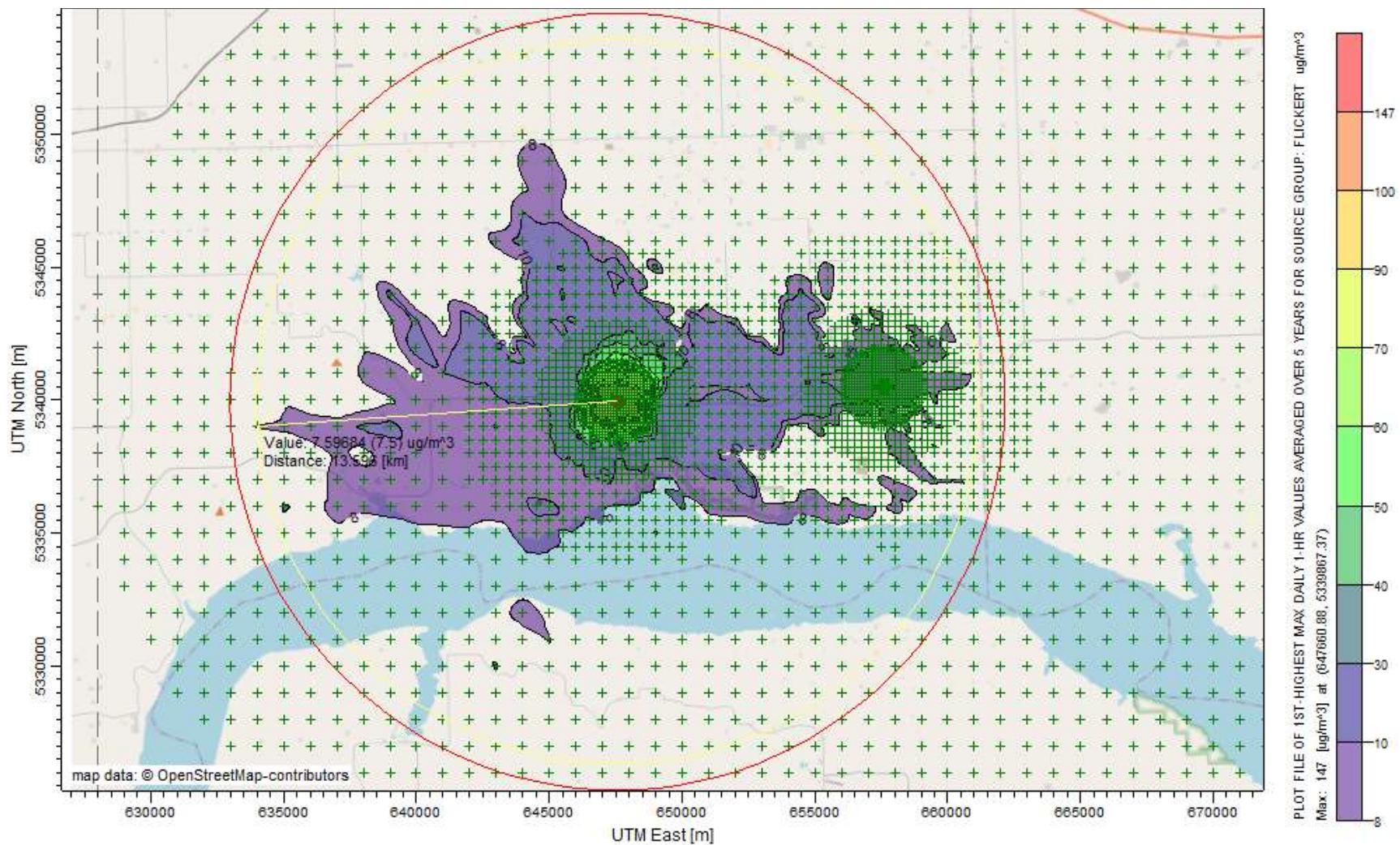
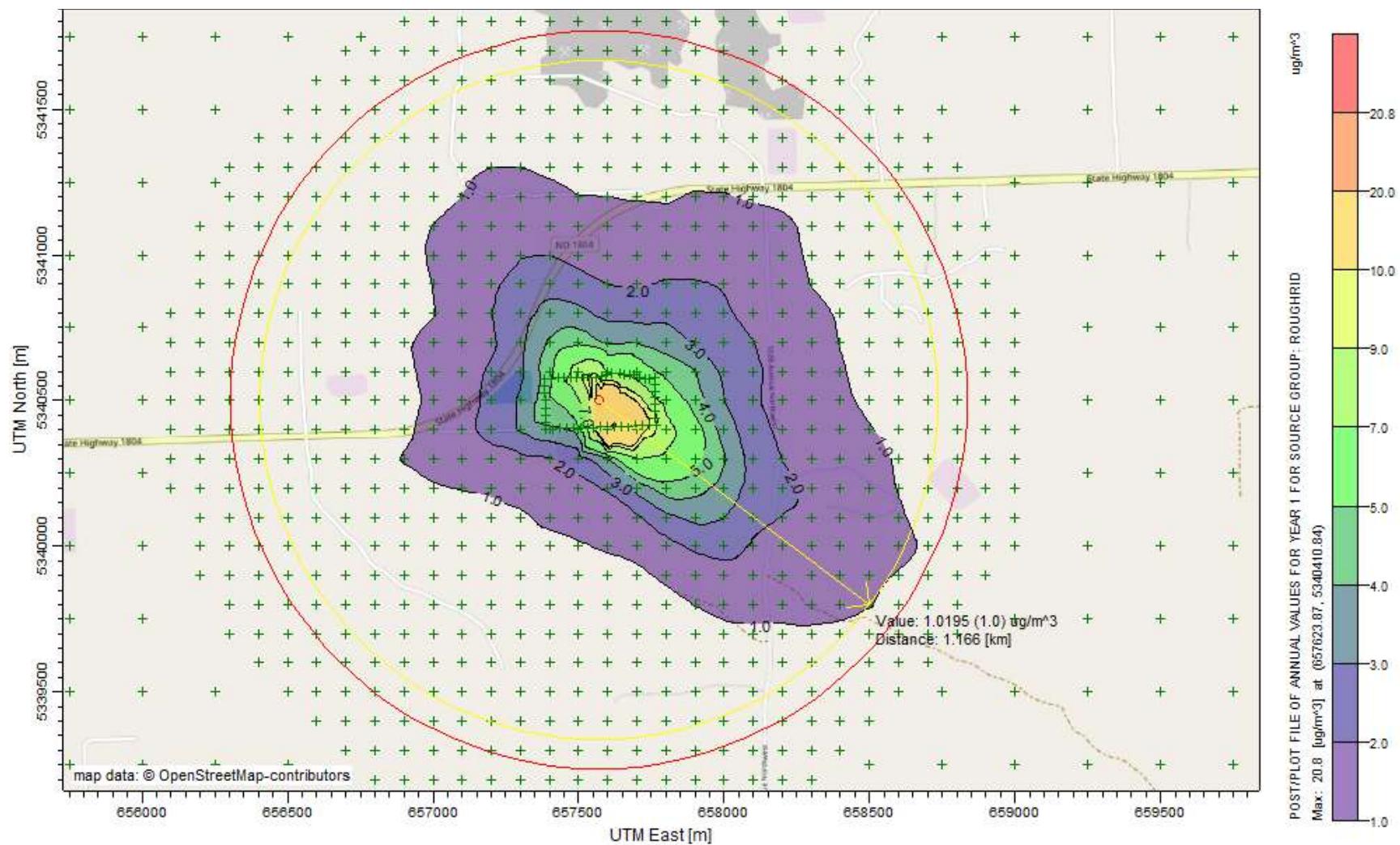
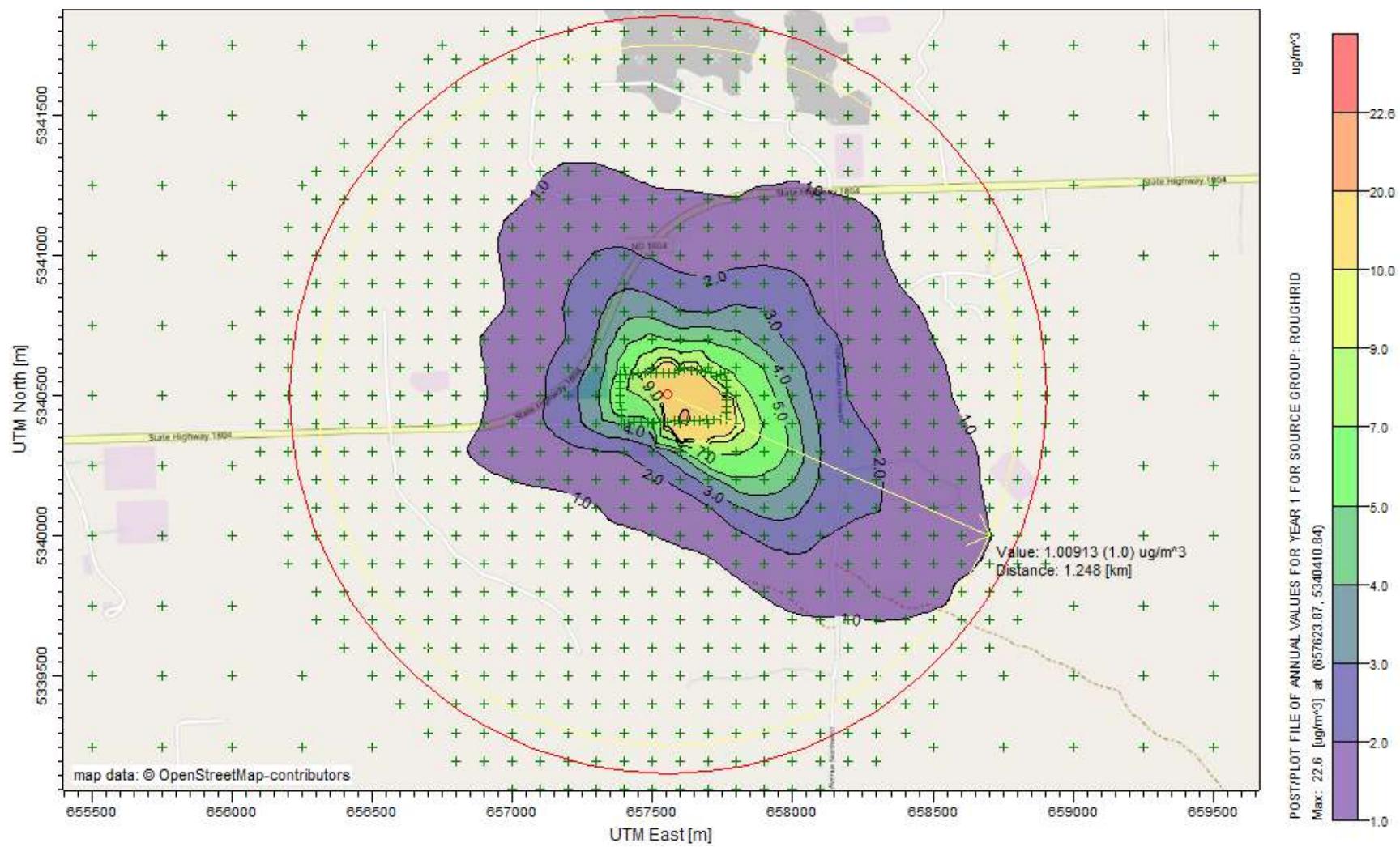




FIGURE 6 - FLICKERTAIL 1-HR NO₂ SIA

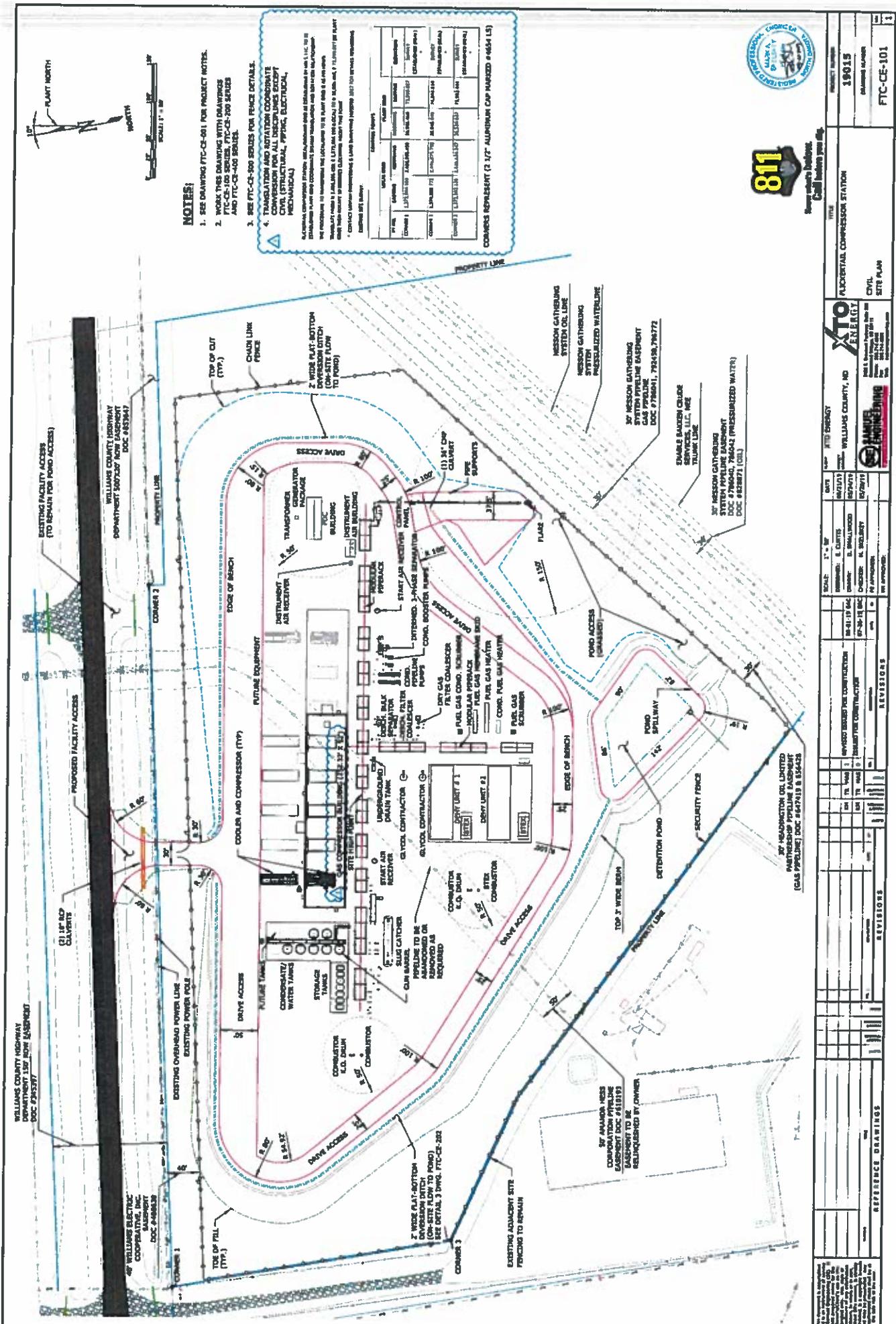

FIGURE 7 - ROUGH RIDER NO2 ANNUAL SIA

FIGURE 8 - FLICKERTAIL NO2 ANNUAL SIA

Attachment # 10
Supporting Documentation

G3608

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm):	1000
COMPRESSION RATIO:	7.6
AFTERCoolER TYPE:	SCAC
AFTERCoolER - STAGE 2 INLET (°F):	130
AFTERCoolER - STAGE 1 INLET (°F):	174
JACKET WATER OUTLET (°F):	190
ASPIRATION:	TA
COOLING SYSTEM:	JW+1AC, OC+2AC
CONTROL SYSTEM:	ADEM4
EXHAUST MANIFOLD:	DRY
COMBUSTION:	LOW EMISSION
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.3
SET POINT TIMING:	17

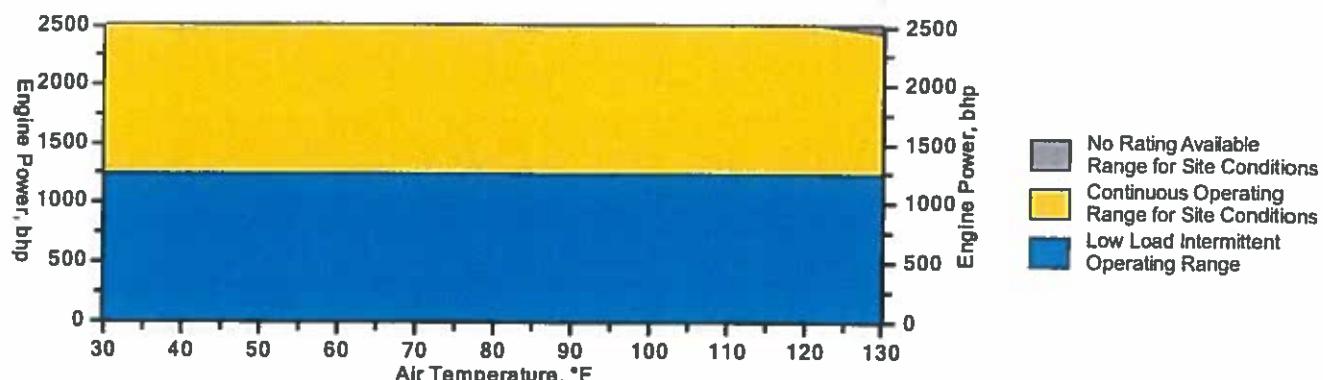
RATING STRATEGY:	STANDARD
RATING LEVEL:	CONTINUOUS
FUEL SYSTEM:	GAV
SITE CONDITIONS:	WITH AIR FUEL RATIO CONTROL
FUEL:	Gas Analysis
FUEL PRESSURE RANGE(psig): (See note 1)	58.0-70.3
FUEL METHANE NUMBER:	61.9
FUEL LHV (Btu/scf):	1077
ALTITUDE(R):	1900
INLET AIR TEMPERATURE(°F):	55
STANDARD RATED POWER:	2500 bhp@1000rpm

RATING	(WITHOUT FAN)	NOTES	LOAD	MAXIMUM SITE RATING AT MAXIMUM INLET AIR TEMPERATURE			
				100%	100%	75%	50%
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	6851	6851	7078	7577
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	7557	7557	7807	8357
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	6067	6067	4598	3126
AIR FLOW	(WET)	(4)(5)	lb/hr	28050	28050	21257	14452
FUEL FLOW (60°F, 14.7 psia)			scfm	265	265	205	147
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	103.8	103.8	78.4	54.7
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	822	822	865	929
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	16084	16084	12612	9012
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	28925	28925	21934	14935
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
CO		(9)(10)	g/bhp-hr	2.84	2.84	2.84	2.84
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	4.43	4.43	4.70	4.77
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	1.87	1.87	1.98	2.01
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.73	0.73	0.77	0.78
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.16	0.16	0.17	0.20
CO2		(9)(10)	g/bhp-hr	465	465	481	514
EXHAUST OXYGEN		(9)(12)	% DRY	11.6	11.6	11.3	10.9
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	27730	27730	23112	19010
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	9086	9086	9600	9375
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	12881	12881	12249	11170
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	21322	21322	10763	3035
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	8029	8029	5188	2729
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+1AC)		(14)(15)	Btu/min	52892			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)		(14)(15)	Btu/min	23888			

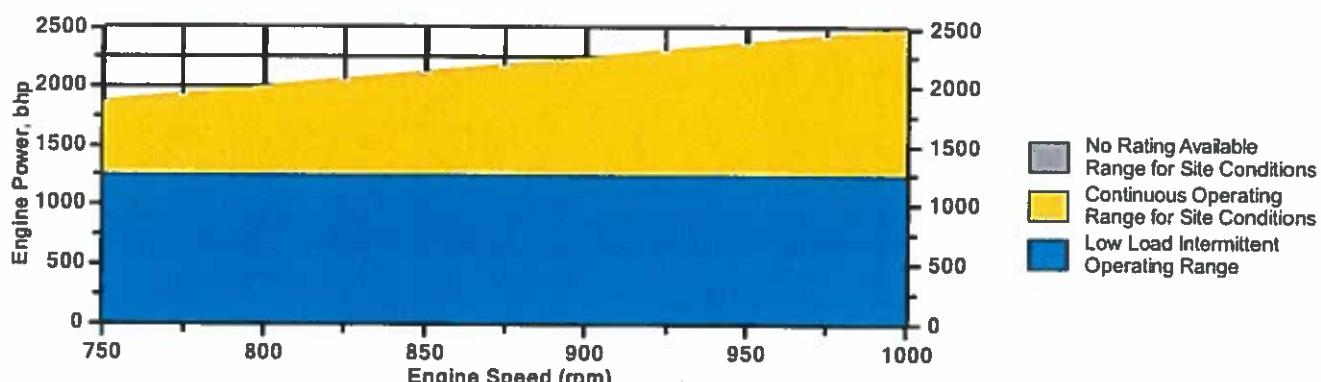
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS

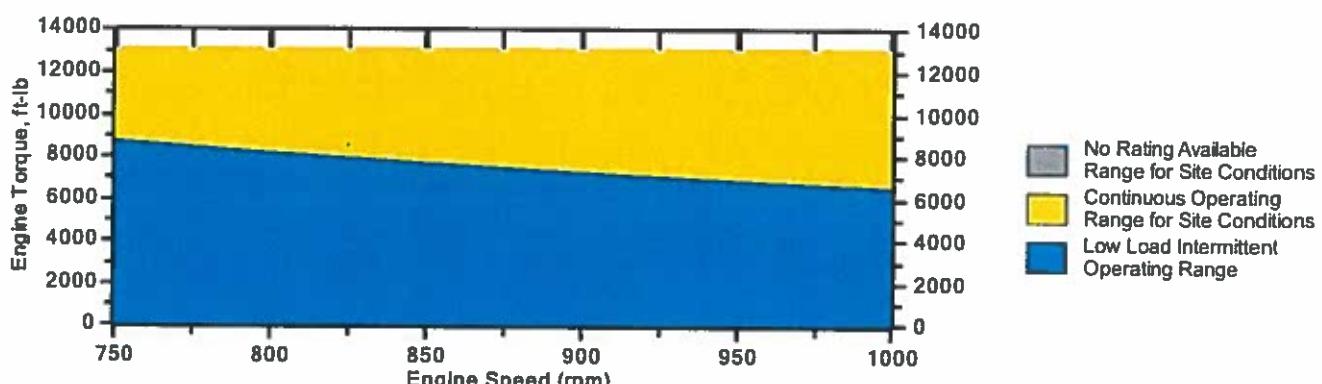
Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three.

PREPARED BY:


Data generated by Gas Engine Rating Pro Version 6.09.03
Ref. Data Set EM1410-04-001, Printed 09Apr2019

Engine Power vs. Inlet Air Temperature


Data represents temperature sweep at 1900 ft and 1000 rpm

Engine Power vs. Engine Speed

Data represents speed sweep at 1900 ft and 55 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1900 ft and 55 °F

Note: At site conditions of 1900 ft and 55°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.
2. Engine rating is with two engine driven water pumps. Tolerance is $\pm 3\%$ of full load.
3. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.
4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of $\pm 5\%$.
5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
6. Inlet manifold pressure is a nominal value with a tolerance of $\pm 5\%$.
7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of $\pm 6\%$.
9. Emissions data is at engine exhaust flange prior to any after treatment.
10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3 . THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .
13. Heat rejection values are nominal. Tolerances, based on treated water, are $\pm 10\%$ for jacket water circuit, $\pm 50\%$ for radiation, $\pm 20\%$ for lube oil circuit, and $\pm 5\%$ for aftercooler circuit.
14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	72.1700	72.1772	Fuel Makeup:	Gas Analysis
Ethane	C2H6	16.0100	16.0116	Unit of Measure:	English
Propane	C3H8	5.4700	5.4705		
Isobutane	iso-C4H10	0.2400	0.2400	<u>Calculated Fuel Properties</u>	
Norbutane	nor-C4H10	0.6400	0.6401	Caterpillar Methane Number:	61.9
Isopentane	iso-C5H12	0.0600	0.0600		
Norpentane	nor-C5H12	0.0600	0.0600		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	1077
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1187
Nitrogen	N2	4.7800	4.7805	WOBBE Index (Btu/scf):	1265
Carbon Dioxide	CO2	0.5600	0.5601		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	17.72
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	5.34%
Hydrogen	H2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Oxygen	O2	0.0000	0.0000		
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.17
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.41
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.725
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.285
TOTAL (Volume %)		99.9900	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

PREPARED BY:

Data generated by Gas Engine Rating Pro Version 6.09.03
Ref. Data Set EM1410-04-001, Printed 09Apr2019

Emission Guarantee

Date: 8/12/2019

Allison Ginger
XTO Energy Inc.

RE: Emission Specs for Bakken Compressor Catalyst

Allison,

I am pleased to provide this guarantee based on the following information. If you have any questions or concerns please feel free to contact myself or any of my associates at DCL America.

Please note: This guarantee is subject to DCL's standard terms and conditions of sale attached. Copies of the limited warranty statement are available from DCL upon request (DCL doc. No. X0000-0000-K1).

Best Regards,

Michael Kourkoubes
Regional Sales Manager
DCL America Inc.
Cell: 713-897-1596
mkourkoubes@dcl-inc.com

Global Leader In Emission Control Solutions
DCL America Inc. 27603 Commerce Oaks Drive, Oak Ridge North, TX 77385
Toll free: 1-877-965-8989 Fax: 281-605-5858 Email: info@dcl-inc.com www.dcl-inc.com

Confidential

Catalyst Element (Table 1)

Application	Fuel Membrane	
Engine Model	CAT 3608A4	
Engine Mechanical Power	2500 hp	
Fuel	High BTU Fuel	
Exhaust Flowrate	28925 lb/hr	
Exhaust Temperature	725 deg. F	
Silencer Housing Model	12ARC3W24-20/24HGS	
Catalyst Model	2DC3W	
Catalyst Part Number	C39J-01-4F3W-32	
Number of Elements	6 (capacity of 12)	
Catalyst Code	0F / 300 cpsi	
Dimensions	48" x15" x3.7"	
Pre-Catalyst Emissions g/bhp-h	NOx	0.30
	CO	2.84
	NMNEHC	0.73
	CH2O	0.16
Post-Catalyst g/bhp-h / % Reduction	NOx	0.30 / 0%
	CO	0.14 / 95%
	NMNEHC	0.18 / 76%
	CH2O	0.01 / 93.75%
Limited Warranty	(doc. X0000-0000-K1) one year or 8000 hours operation, whichever first	

Global Leader In Emission Control Solutions
DCL America Inc. 27603 Commerce Oaks Drive, Oak Ridge North, TX 77385
Toll free: 1-877-965-8989 Fax: 281-605-5858 Email: info@dcl-inc.com www.dcl-inc.com

Confidential