

SUBMITTED ELECTRONICALLY VIA CERIS

February 6, 2025

Mr. Jim Semerad, Director North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street Bismarck, ND 58503-1324

ONEOK ROCKIES MIDSTREAM, L.L.C. LOST BRIDGE-CORRAL CREEK COMPRESSOR STATION PERMIT TO CONSTRUCT

Dear Mr. Semerad,

ONEOK Rockies Midstream, L.L.C. (ORM) operates the Corral Creek Compressor Station in Dunn County, North Dakota pursuant to Permit No. ACP-018109v1.0. The facility is collocated with the Lost Bridge Compressor Station operating under permit ACP-018115v1.0. ORM submits this Permit to Construct to add an additional flare to the Corral Creek facility (CC-FL-3) to control emissions from blowdown events and eliminate the fire/safety risk of the existing flare. As a result, ORM will cease operation of the existing flare CC-FL-1. Process safety venting will be released to atmosphere and emissions are included in the Miscellaneous Venting and Blowdowns to Atmosphere (BD) emission source.

If you need additional information or have any questions, please contact me at 918-588-7862 or Joshua.Hills@oneok.com.

Sincerely,

Joshua Hills

John Un

Environmental Professional

xc: T. Bower/K. Rudningen/S. Nies/V. Danzeisen/J. Chrobak /K. Hanner (.pdf)
Tulsa Environmental Files – Lost Bridge-Corral Creek Compressor Station – Permit Actions – ACTS

Permit to Construct Application

Corral Creek Compressor Station

ONEOK Rockies Midstream, L.L.C.

Submitted to NDDEQ Division of Air Quality February 2025

Table of Contents

Table of Contents	i
Introduction	1
Facility Equipment	1
Process Description	1
Regulatory Applicability	1
Application Forms	5
Form SFN 8516 – Permit Application for Air Contaminant Sources	6
Form SFN 59652 – Permit Application for Flares	9
Appendix A – Maps and Drawings	25
Figure 1 – Area Map	26
Figure 2 – Process Flow Diagram	
Appendix B – Emissions Calculations	28
Appendix C – Support Documents	52
Inlet Gas Sample	44

Introduction

ONEOK Rockies Midstream, L.L.C. (ORM) operates the Corral Creek Compressor Station in Dunn County, North Dakota pursuant to Permit No. ACP-018109v1.0. The facility is collocated with the Lost Bridge Compressor Station operating under permit ACP-018115v1.0. ORM submits this Permit to Construct to add an additional flare to the Corral Creek facility (CC-FL-3) to control emissions from blowdown events and eliminate the fire/safety risk of the existing flare. As a result, ORM will cease operation of the existing flare CC-FL-1. Process safety venting will be released to atmosphere and emissions are included in the Miscellaneous Venting and Blowdowns to Atmosphere (BD) emission source.

Facility Equipment

Corral Creek Compressor Station will consist of three (3) electrically driven compressors, six (6) 400-bbl condensate tanks, two (2) 400-bbl produced water tanks, one (1) 400-bbl methanol tank, one (1) process flare for controlling emergency and miscellaneous reliefs, and one (1) VOC flare control emissions from the condensate tanks. Associated emission sources will include condensate truck loading, fugitive emissions and miscellaneous vents and blowdowns.

Process Description

A pipeline gathering system transports field natural gas from wells through an inlet separator where free liquids are removed and stored in the condensate tanks which will be controlled by a flare. Natural gas then passes through a suction header and is routed to the compressors, which boost gas pressure. The compressor units will discharge natural gas into a pipeline for transmission. Condensate is transported off-site via tank truck for sales. Emissions from fugitive components and miscellaneous vents and blowdowns also occur at the facility. A flare will be utilized to combust compressor blowdowns and for emergency upsets.

Regulatory Applicability

The facility is a natural gas compressor station that falls under the North American Industrial Classification System (NAICS) code 211130 (formerly Standard Industrial Classification (SIC) 1311).

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ, Stationary Spark Ignition Internal Combustion Engines (SI-ICE) promulgates emission standards for all new SI engines ordered after June 12, 2006, and all SI engines modified or reconstructed after June 12, 2006, regardless of size. There are no SI-ICE located at this facility.

New Source Performance Standards 40 CFR Part 60 Subpart OOOO, Crude Oil and Natural Gas Production, Transmission and Distribution, establishes emission standards for the following equipment that commences construction, modification, or reconstruction after August 23, 2011 and on or before September 18, 2015 at crude oil and natural gas production, transmission or distribution facilities:

- 1. Each single gas well;
- 2. Single centrifugal compressors using wet seals located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 3. Single reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment and not located at a natural gas processing plant;

- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;
- 6. Single storage vessels located in the oil and natural gas production segment, natural gas processing segment, or natural gas transmission and storage segment with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. All equipment, except compressors, within a process unit at an onshore natural gas processing plant;
- 8. Sweetening units located at onshore natural gas processing plants.

All equipment at Corral Creek Compressor Station was constructed after September 18, 2015 and will not be subject to this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOa, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after September 18, 2015 at crude oil and natural gas production, transmission or distribution facilities:

- 1. Each single oil or gas well that conducts a completion following hydraulic fracturing or refracturing;
- 2. Single centrifugal compressors using wet seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Single continuous bleed natural gas driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH, not located at a natural gas processing plant;
- 5. Single continuous bleed natural gas driven pneumatic controllers located at a natural gas processing plant;
- 6. Single storage vessels with the potential for VOC emissions equal to or greater than 6 tons per year;
- 7. The group of all equipment within a process unit;
- 8. The group of fugitive emissions equipment at a compressor station;
- 9. The group of fugitive emissions equipment at a well site;
- 10. Sweetening units located at onshore natural gas processing plants;
- 11. Pneumatic pumps at natural gas processing plants and well sites.

Potentially affected equipment at the proposed facility includes the reciprocating compressors associated with each of the compressor engines. ORM will comply with the requirements for rod packing replacement as required. Any continuous bleed pneumatic controllers proposed for the facility will have a bleed rate less than 6 SCFH; therefore, they will not be subject to this subpart. The condensate tanks were constructed after September 18, 2015, but they will be controlled so their emissions will be less than 6 tons per year. ORM requests a federally enforceable emission limitation of 5.99 tons per year for each tank so that they will be exempt from this subpart. The produced water tanks were constructed after September 18, 2015, but will have emissions less than 6 tons per year and therefore are not subject. The facility is subject to the leak detection requirements of this subpart.

New Source Performance Standards 40 CFR Part 60 Subpart OOOOb, Crude Oil and Natural Gas Facilities, establishes emission standards for the following equipment that commences construction, modification or reconstruction after December 6, 2022 at crude oil and natural gas facilities:

- 1. Each single oil or gas well;;
- 2. Single centrifugal compressors using wet or dry seals that are not located at a well site;
- 3. Single reciprocating compressors not located at a well site;
- 4. Each collection of natural gas-driven process controllers at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 5. Storage vessel batteries with either the potential for VOC emissions equal to or greater than 6 tons per year or the potential for methane emissions equal to or greater than 20 tons per year;
- 6. The group of all equipment within a process unit at an onshore natural gas processing plant;

- 7. Sweetening units;
- 8. The group of all natural gas-driven pumps at a well site, centralized production facility, onshore natural gas processing plant, or compressor station;
- 9. The group of fugitive emissions equipment at a well site, centralized production facility or compressor station:

All potentially affected equipment is constructed prior to December 6, 2022 and is not subject to this subpart.

National Emission Standards for Hazardous Air Pollutants 40 CFR Part 63 Subpart ZZZZ, Reciprocating Internal Combustion Engines (RICE), affects any existing, new or reconstructed stationary RICE located at a major or area source of HAP emissions. Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). There are no RICE at this facility; therefore, this subpart is not applicable.

Application Forms

Form SFN 8516 – Permit Application for Air Contaminant Sources

Form SFN 59652 – Permit Application for Flares

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (9-2021)

SECTION A - FACIL		RMAT	ION					
Name of Firm or Organization ONEOK Rockies Midstream, L.L.C.								
Applicant's Name Dick Vande Bossche								
Title				Telep	hone Nui 33-8710	mber	E-mail Add	dress ossche@oneok.com
Contact Person for Air			alions [((400) 4	33-07 10		uick.varidebo	osscrie@orieok.com
Joshua Hills Title			1.	Talan	hono Nu	mhor	E-mail Add	droop
Environmental Specialist			((918) 5	hone N ui 88-7862	mbei	Joshua.Hills	
Mailing Address (Street & No.) 100 W Fifth St.								
City Tulsa				State Oklaho	ma			ZIP Code 74102
Facility Name Lost Bridge-Corral Creek C	compressor St	ation						
Facility Address (Street	t & No.)							
City Oakdale				State)akota			ZIP Code
County				NAD 8	3 in Dec	imal D		rth decimal degree)
Dunn		Latitud 47.517		Longitude -102.8484			0000	
Legal Description of Fa							1	T _
Quarter	\uarter	Section 25		ion Town 147N		ship	Range 96W	
Land Area at Facility Si 8 Acres (or)		q. Ft.		MSL I ~2,517	Elevation ft	at Fac	cility	
/ (e. ee (e.)		4	I	•				
SECTION B - GENI	ERAL NA	TURE (OF BL	JSINI	ESS			
Describe Nature of Bus	siness			,		Standard Industrial Classification Number (SIC)		
Natural Gas Com		Oldoon		211130		1311		
Tratural Gas Gom	pression			211100			1011	
SECTION C – GENERAL PERMIT INFORMATION								
Type of Permit?	ermit to Cor	nstruct (I	PTC)		Permit	to Ope	rate (PTO)	
If application is for a Pe		struct, p	lease p					
Planned Start Construction Date 02/2025				-	Planned E 1/2025	nd Co	nstruction Da	ate

SECTION D - SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

Permit to Construct				Minor	Source	e Permi	t to On	erete				
Permit to Construct				IVIIIIOI	Jource	- i- CIIIII	i io Opi	-iale				
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
CC-FL-3	Process Flare	✓										
CC-BD	Miscellaneous Venting and Blowdowns to Atr		\checkmark									
A -1 -11 -12	tional pages if page											

Add additional pages if necessary

SECTION D2 – APPLICABLE REGULATIONS

Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)

SECTION E - TOTAL POTENTIAL EMISSIONS

Pollutant	Amount (Tons Per Year)
NOx	0.75
СО	2.46
PM	0.02

SFN 8516 (9-2021) Page 3

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	0.02
PM _{2.5} (filterable and condensable)	0.02
SO ₂	0.28
VOC	89.30
GHG (as CO ₂ e)	2552.12
Largest Single HAP	6.66
Total HAPS	9.5

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORMS

Indi	Indicate which of the following forms are attached and made part of the application					
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect			
	(SFN 8532)		Heating (SFN 8518)			
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources			
	(SFN 8522)		(SFN 8329)			
	Natural Gas Processing Plants		Manufacturing or Processing Equipment			
	(SFN 11408)		(SFN 8520)			
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank			
	(SFN 58923)		(SFN 8535)			
	Flares		Internal Combustion Engines and Turbines			
	(SFN 59652)		(SFN 8891)			
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration			
	(SFN 8524)		(SFN 14334)			

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	Process Description and Regulatory Applicability	4.	Emission Calculations
2.	Area Map	5.	Supporting Documentation
3.	Process Flow Diagram	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature	DocuSigned by:	Date
	Dick Vande Bossche	2/6/2025
	67B797C4193640F	

PERMIT APPLICATION FOR FLARES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 59652 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

		Facility Name Lost Bridge-Corral Creek Compressor Station				
SECTION B - FLARE INFOR	PMATION.	2001 Bridge Certal Crook Certification				
Use: Emergency Pro		Subject to NSPS (40 CFR 60.18) ○ Yes • No				
Emission Point ID CC-FL-3	Height Above Gr	ound Level (ft.) Diameter at Top (ft.)				
Flame Monitor: Thermocouple Other:	e Infrared	☐ Ultraviolet ☐ Acoustic				
Ignition: Automatic Continuous Burning Pilot Other:						
Average Btu/1000 scf 1.207	Percent H ₂ S	Maximum Hourly Flow Rate to Flare 40.91lb/hr				
List source ID numbers controlled by this unit, if any:						

SECTION C - AIR CONTAMINANTS EMITTED

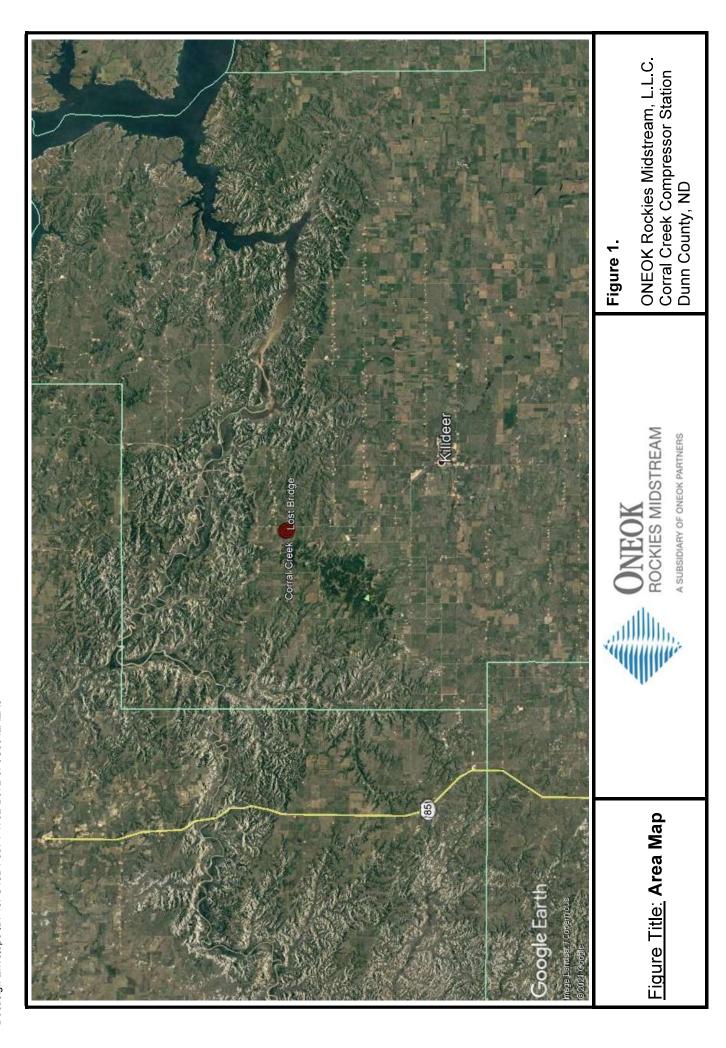
Pollutant	Amount (Tons Per Year)	Basis of Estimate*
NO _x	0.13	AP-42 Table 1.4-1
CO	0.29	AP-42 Table 1.4-1
PM	0.01	AP-42 Table 1.4-2
PM ₁₀ (filterable and condensable)	0.01	AP-42 Table 1.4-1 and Mass Balance
PM _{2.5} (filterable and condensable)	0.01	AP-42 Table 1.4-2
SO ₂	0.01	AP-42 Table 1.4-2
VOC	0.18	AP-42 Table 1.4-1 and Mass Balance
GHG (as CO ₂ e)	193.76	40 CFR 98
Largest Single HAP	0.01	AP-42 Table 1.4-1 and Mass Balance
Total HAPS	0.01	AP-42 Table 1.4-1 and Mass Balance

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee are used provide spec sheet.

SFN 59652 (9-2021) Page 2

Will flaring of gas comply with applicable Ambient Air Quality Standards? ■ Yes □ No					
IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION CONTROL RULES AND REGULATIONS?	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.				
■ YES □ NO					

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants or other items.


SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701)328-5188

Appendix A - Maps and Drawings

Figure 1 – Area Map

Figure 2 – Process Flow Diagram

Appendix B – Emissions Calculations

ONEOK Rockies Midstream, L.L.C. Lost Bridge Compressor Station/Corral Creek Compressor Station Facility Emissions Summary - Annual

Unit ID	Description	NOX	00	voc	SO ₂	PM	НСНО	HAP	CO ₂ e
		TPY	TPY	ТРҮ	ТРҮ	ТРҮ	ТРҮ	TPY	TPY
Lost Bridge	Lost Bridge Compressor Station								
LB-TK-1	400-bbl Condensate Tank	I	-	5.81	ŀ	ı	-	0.15	8.94
LB-TK-2	400-bbl Condensate Tank	I	1	0.22	ŀ	ŀ	-	0.03	00.00
LB-TK-3	400-bbl Condensate Tank	ŀ	1	0.22	ŀ	ŀ	-	0.03	00'0
LB-TK-4	400-bbl Condensate Tank	1	1	5.81	1	1	1	0.15	8.94
LB-TK-5	400-bbl Condensate Tank	1	1	0.22	1	ı	ŀ	0.03	00'0
LB-TK-6	400-bbl Condensate Tank	1	-	0.22	1	ŀ	ŀ	0.03	00'0
LB-TL-1	Condensate Truck Loading	ł	1	19.20	ł	ł	ŀ	3.73	24.31
LB-FL-1	Emergency Flare	0.14	0.29	0.20	0.28	0.01	<0.01	<0.01	196.54
LB-MTK-1	200-bbl Methanol Tank	1	1	0.17	1	ł	ŀ	0.17	ŀ
LB-FUG	Fugitive Emissions	1	-	4.65	1	ł	ŀ	0.33	398.00
LB-BD	Miscellaneous Venting and Blowdowns to Atmosphere	ł	-	5.59	ŀ	ł	ŀ	0.03	213.19
Corral Cre	Corral Creek Compressor Station								
CC-TK-1	CC-TK-1 400-bbl Condensate Tank	ł	ŀ	5.64	ł	ŀ	ł	0.28	10.27
CC-TK-2	400-bbl Condensate Tank	ŀ	I	0.04	ŀ	ł	ŀ	<0.01	00.00
CC-TK-3	400-bbl Condensate Tank	1	-	0.04	-	-	-	<0.01	00.00
CC-TK-4	400-bbl Condensate Tank	1	-	5.64	-	-	-	0.28	10.27
CC-TK-5	400-bbl Condensate Tank	ı	-	0.04	1	-		<0.01	00'0
CC-TK-6	400-bbl Condensate Tank	1	-	0.04	1	-	-	<0.01	0.00
CC-TL-1	Condensate Truck Loading	1	-	19.20	1	-	-	3.73	24.31
CC-FL-3	Process Flare	0.13	0.29	0.18	<0.01	0.01	<0.01	<0.01	193.76
CC-FL-2	VOC Flare	0.48	1.88	<0.01	<0.01	0.01	<0.01	<0.01	786.56
CC-MTK-1	CC-MTK-1 400-bbl Methanol Tank	-	-	0.34	-	-	-	0.34	-
CC-FUG	Fugitive Emissions	-	-	4.37	-	-	1	0.16	164.81
CC-BD	Miscellaneous Venting and Blowdowns to Atmosphe	:		11.48	:	:	:	0.07	512.21
	Total =	0.75	2.46	89.30	0.28	0.02	<0.01	9.50	2,552.12
18.41.		1 1 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2				4 - 4 1			

¹Miscellaneous venting and blowdowns to atmosphere include, but are not limited to, miscellaneous planned and unplanned venting to atmosphere from pressure relief valves, startup, shut-down, maintenance, compressor blowdowns, pigging actions, and/or pneumatic controllers.

Docusign Envelope ID: 48FC48B4-6974-4792-B672-0F6C0942AEA3

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Facility Emissions Summary - Hourly

Unit ID	Description	NOX	00	voc	so ₂	PM	онон	НАР	CO ₂ e
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
CC-TK-1	CC-TK-1 400-bbl Condensate Tank	-	-	1.29	-		-	90'0	2.34
CC-TK-2	CC-TK-2 400-bbl Condensate Tank	-	-	0.01	ŀ		ŀ	<0.01	00'0
CC-TK-3	CC-TK-3 400-bbl Condensate Tank	-	-	0.01	ł		ŀ	<0.01	00'0
CC-TK-4	CC-TK-4 400-bbl Condensate Tank			1.29	-		-	90'0	2.34
CC-TK-5	CC-TK-5 400-bbl Condensate Tank	-	-	0.01	ŀ	-	-	<0.01	00'0
CC-TK-6	CC-TK-6 400-bbl Condensate Tank	-	1	0.01	ł	1	ŀ	<0.01	00'0
CC-TL-1	CC-TL-1 Condensate Truck Loading			4.38	-			98'0	<u> </u>
CC-FL-3	Process Flare	0.18	0.72	85'0	<0.01	<0.01	<0.01	<0.01	319 09
CC-FL-2	VOC Flare	0.11	0.43	<0.01	<0.01	<0.01	<0.01	<0.01	181.75
MTK-2	400-bbl Methanol Tank			00'0	-	-	-	00'0	
CC-FUG	Fugitive Emissions			1.00	-	-	-	0.04	25.63
CC-BD	Miscellaneous Venting and Blowdowns to Atmosphere	-	ı	ï	:	:		-	-
	Total =	0.29	1.15	85'8	<0.01	<0.01	<0.01	1.02	548.71

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Facility Analyses

			č	,			č	•			č	•	
			orream I				orre	Stream z			Stre	Stream 3	
,	Molecular		Inlet	Gas			Conde	Condensate			Flast	Flash Gas	
Component	Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	Wole %	Equiv. Wt. Basis	Weight %	HC Weight %
Hydrogen Sulfide	34.081	0.0001%	00.00	%00.0	1	%0000 ' 0	00'0	%00 ' 0	1	%0000'0	00.00	%00'0	ı
Carbon Dioxide	44.010	1.0613%	0.47	2.00%	-	0.0054%	00'0	%00'0	-	0.3620%	0.16	0.42%	1
Nitrogen	28.013	3.0318%	0.85	3.64%	-	0.0018%	00'0	%00 ⁻ 0	-	1.3400%	0.38	%86.0	1
Helium	4.003	%00000	00.00	%00'0	1	%000000	00'0	%00'0	1	%00000	00.00	%00.0	1
Oxygen	31.999	%00000	00'0	%00'0	1	%00000	00'0	%00'0	-	%00000	00'0	%00'0	1
Methane	16.043	64 6032%	10.36	44.36%	47.01%	0.1110%	0.02	0.02%	0.02%	22.9000%	3.67	809.6	9.74%
Ethane	30.069	19 5481%	5.88	25.16%	26.66%	1.0300%	0.31	%36.0	0.35%	30.0000%	9.02	23.57%	23.91%
Propane	44 096	8.2431%	3.63	15.56%	16.49%	3.0900%	1.36	1.54%	1 54%	23.5000%	10.36	27.08%	27.46%
i-Butane	58.122	0.7570%	0.44	1.88%	2.00%	1.0500%	0.61	%69'0	%69.0	2.9100%	1.69	4 42%	4.48%
n-Butane	58.122	2.0285%	1.18	2.05%	2.35%	5.3200%	3 ['] 08	3.49%	3.49%	9.8100%	5.70	14 90%	15.11%
i-Pentane	72.149	0.2446%	0.18	%92'0	%08'0	3.2400%	2.34	2.64%	2.64%	2.2600%	1.63	4.26%	4.32%
n-Pentane	72.149	0.3202%	0.23	%66.0	1.05%	7.0100%	90'9	2.71%	5.71%	3.5100%	2.53	6.62%	6.71%
n-Hexane	86.175	0.0240%	0.02	%60.0	%60.0	15.0000%	12.93	14.59%	14 59%	1.9700%	1.70	4.44%	4.50%
Other Hexanes	86.175	0.1035%	60.0	0.38%	0.40%	%00000	00'0	%00 ' 0	0.00%	%00000	0.00	0.00%	%00.0
Heptanes	100.202	0.0111%	0.01	0.05%	0.05%	25.6000%	25.65	78.95%	28.95%	0.9830%	0.98	2.57%	2.61%
Benzene	78.114	0.0053%	00.00	0.02%	0.02%	0.8640%	0.67	%94'0	%92 0	0.1100%	0.09	0.22%	0.23%
Toluene	92.141	0.0046%	0.00	0.02%	0.02%	1.4500%	1.34	1.51%	1.51%	0.0492%	0.05	0.12%	0.12%
Ethylbenzene	106.167	0.0002%	00.00	0.00%	%00.0	0.4850%	0.51	%85'0	0.58%	0.0050%	0.01	0.01%	0.01%
Xylenes	106.167	0.0012%	00.00	0.01%	0.01%	1.6500%	1.75	1.98%	1.98%	0.0136%	0.01	0.04%	0.04%
Octanes	114.229	0.0078%	0.01	0.04%	0.04%	20 3000%	23.19	26.17%	26 17%	0.2220%	0.25	0.66%	%29.0
2,2,4-TrimethyIpentane	114.231	0.0043%	00.00	0.02%	0.02%	%00000	00'0	%00 ' 0	0.00%	%00000	0.00	0.00%	%00.0
Nonanes	128.255	%000000	0.00	%00.0	0.00%	7.6100%	9.76	11.02%	11.02%	0.0239%	0.03	0.08%	0.08%
Decanes	142.282	%00000	00.00	%00.0	%00.0	%00000	00'0	%00 ' 0	0.00%	%00000	0.00	0.00%	%00.0
	Totals =	%6666.66	23.36	100.00%	100.00%	93.8172%	88 59	100.00%	100.00%	%2896.66	38.27	100.00%	100.00%
		Total HC =	22.05	Total VOC =	26.33%	Total HC =	88 59	Total VOC =	%89.66	Total HC =	37.73	Total VOC =	%98.99
				Total HAP =	0.16%			Total HAP =	19.42%			Total HAP =	4.90%

Notes: 1) Condensate and flash gas compositions calculated with site-specific ProMax process simulation.

Estimated Extended Gas Analysis

Component	Produ	uction
Component	GRI Fraction	Estimated Mole %
Other Hexanes	0.6385	0.1035
n-Hexane	0.1479	0.0240
Heptane	0.0687	0.0111
2,2,4-Trimethylpentane	0.0267	0.0043
Octanes+	0.0480	0.0078
Benzene	0.0331	0.0054
Toluene	0.0285	0.0046
Ethylbenzene	0.0014	0.0002
Xylenes	0.0072	0.0012
	Total=	0.1621

C6+ Value From Gas Analysis =

0.1621

mole %

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Flare Information and Emission Factors

Equipment Inforr	mation
	CC-FL-3
Description	Process Flare
VOC to Flare (lb/hr)	28.91
Stream Heat Content (Btu/scf)	1,207
Stream Net Btu Value (Btu/hr)	2,279,624
Operating Hours	600
Control Efficiency	98%
Pilot Stream Heat Content (Btu/scf)	1,026
Pilot Gas Flow Rate (scfh)	200
Pilot Gas Capacity (MMBtu/hr)	0.21
Pilot Operating Hours	8,760

	AP-42/EPA Emis	sion Factors ¹	
	Flare Stream		Pilot Gas
NOx (lb/mmBtu)	0.068	NOx (lb/mmscf)	100.0
CO (lb/mmBtu)	0.31	CO (lb/mmscf)	84.0
voc	Mass Balance	VOC (lb/mmscf)	5.5
SO ₂	Stoichiometric	SO ₂ (lb/mmscf)	0.6
PM _{10/2.5}	-	PM _{10/2.5} (lb/mmscf)	1.9
PM _{COND}		PM _{COND} (lb/mmscf)	5.7
PM _{TOT}		PM _{TOT} (lb/mmscf)	7.6
Formaldehyde	-	Formaldehyde (lb/mmscf)	7.50E-02
n-Hexane	Mass Balance	n-Hexane (lb/mmscf)	1.80E+00
Benzene	Mass Balance	Benzene (lb/mmscf)	2.10E-03
Toluene	Mass Balance	Toluene (lb/mmscf)	3.40E-03
Ethylbenzene	Mass Balance	Ethylbenzene	
Xylenes	Mass Balance	Xylenes	
Other HAP	Mass Balance	Other HAP (lb/mmscf)	1.90E-03
Carbon Dioxide (CO ₂) (kg/mmBtu)	53.06/Mass Balance	Carbon Dioxide (CO ₂) (kg/mmBtu)	53.06
Methane (CH₄) (kg/mmBtu)	0.001/Mass Balance	Methane (CH₄) (kg/mmBtu)	1.00E-03
Nitrous Oxide (N₂O) (kg/mmBtu)	0.0001/Mass Balance	Nitrous Oxide (N ₂ O) (kg/mmBtu)	1.00E-04

Notes:

¹⁾ NOx and CO emission factors (lb/mmBtu), flare stream: AP-42, Table 13.5-1 (2/2018). Pilot criteria and HAP emission factors (lb/mmscf): AP-42, Table 1.4-1, -2 (7/98). GHG emission factors (kg/mmBtu): 40 CFR 98.

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Flare Emissions Calculations

CC-FL-3 Unit ID:

Total: Stream + Pilot

	lb/hr		
		0.13	ТРҮ
	lb/hr	0.29	ТРҮ
	lb/hr	0.18	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
	l lb/hr	<0.01	ТРҮ
CO ₂ 292.99	9 lb/hr	185.83	ТРҮ
CH ₄ 1.04	lb/hr	0.31	ТРҮ
N_2O <0.01	l lb/hr	<0.01	ТРҮ

Stream Emissions																			
Pollutant	Emission Factor	n Factor		Capacity	ıcity		Conversion	ion		Hourly Emissions	issions	Ope	Operating Hours	ırs	Conversion	sion.		Annual Emissions	nissions
NOX	6.80E-02 lb/mmBtu	lb/mmBtu	×	2.28E+00 mmBtu/hr	mmBtu/hr	×	-		п	0.16	lb/hr	×	009	×	0.0005	ton/lb	=	0.05	ТРҮ
03	3.10E-01 lb/mmBtu	lb/mmBtu	×	2.28E+00 mmBtu/hr	mmBtu/hr	×			11	0.71	lb/hr	×	009	×	0.0005	ton/lb	п	0.21	ТРҮ
NOC	,		١.			١.			11	0.58	lb/hr	×	009	×	0.0005	ton/lb	ш	0.17	ТРҮ
so ₂	,						-	-	п	<0.01	lb/hr	×	009	×	0.0005	ton/lb	п	<0.01	ТРҮ
n-Hexane	,						-	-	п	<0.01	lb/hr	×	009	×	0.0005	ton/lb	п	<0.01	ТРҮ
Benzene	-						-	ı	=	<0.01	lb/hr	×	009	×	0.0005	ton/lb	П	<0.01	ТРҮ
Toluene	-						-		=	<0.01	lb/hr	×	009	×	0.0005	ton/lb	П	<0.01	ТРҮ
Ethylbenzene	-						-		=	<0.01	lb/hr	×	300	×	0.0005	ton/lb	II	<0.01	ТРҮ
Xylenes							1		II	<0.01	lb/hr	×	300	×	0.0005	ton/lb	II	<0.01	ТРҮ
Other HAP							1		II	<0.01	lb/hr	×	009	×	0.0005	ton/lb	II	<0.01	ТРҮ
co	5.31E+01 kg/mmBtu	kg/mmBtu	×	2.28E+00 mmBtu/hr	mmBtu/hr	×	2.20462	b/kg	II	266.66	lb/hr	×	009	×	0.0005	ton/lb	II	80.00	ТРҮ
co ₂							1		II	2.33	lb/hr	×	009	×	0.0005	ton/lb	Ш	0.70	ТРҮ
CH⁴		1.00E-03 kg/mmBtu	×	2.28E+00	mmBtu/hr	×	2.20462	b/kg	н	0.01	lb/hr	×	009	×	0.0005	ton/lb	П	<0.01	ТРҮ
CH⁴	-	-		-	-		-	-	н	1.03	lb/hr	×	009	×	0.0005	ton/lb	н	0.31	ТРҮ
N ₂ O ₁	N ₂ O 1.00E-04 kg/mmBtu	kg/mmBtu	×	2.28E+00 mmBtu/hr	mmBtu/hr	×	2.20462	b/kg	=	<0.01	lb/hr	×	009	×	0.0005	ton/lb	=	<0.01	ТРҮ
								ŀ	l								l		

Flare Emissions Calculations (Continued)

Pilot Emissions

I IIOC EIIII3310113																			
Pollutant		Emission Factor		Cap	Capacity		Conversion	ion		Hourly Emissions	issions	Ope	Operating Hours	ış	Conversion	sion.		Annual Emissions	issions
NON	NOx 1.00E+02 lb/mmscf	lb/mmscf	×	2.00E-04	2.00E-04 mmscf/hr	×	-	ı	=	0.02	b/hr	×	8,760	×	0.0005	ton/lb	=	60'0	ТРҮ
oo	CO 8.40E+01 lb/mmscf	lb/mmscf	×	2.00E-04	mmscf/hr	×	-		=	0.02	b/hr	×	8,760	×	0.0005	ton/lb	н	0.07	ТРУ
voc	VOC 5.50E+00 lb/mmscf	lb/mmscf	×	2.00E-04	mmscf/hr	×	-		п	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	п	<0.01	ТРҮ
sos	SO₂ 6.00E-01 lb/mmscf	lb/mmscf	×	2.00E-04	2.00E-04 mmscf/hr	×	-	ı	=	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	н	<0.01	ТРУ
PM _{10/2.5}	1.90E+00	1.90E+00 lb/mmscf	×	2.00E-04	mmscf/hr	×	-	ı	=	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	н	<0.01	ТРУ
PMCOND	5.70E+00 lb/mmscf	lb/mmscf	×	2.00E-04	mmscf/hr	×	-	ı	=	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	н	<0.01	ТРУ
PMTOT	PM _{ToT} 7.60E+00 lb/mmscf	lb/mmscf	×	2.00E-04	2.00E-04 mmscf/hr	×	-	ı	11	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	п	0.01	ТРҮ
Formaldehyde 7.50E-02 lb/mmscf	7.50E-02	lb/mmscf	×	2.00E-04	2.00E-04 mmscf/hr	×	-		11	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	п	<0.01	ТРҮ
n-Hexane	1.80E+00	1.80E+00 lb/mmscf	×	2.00E-04	mmscf/hr	×	-		11	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	п	<0.01	ТРҮ
Benzene	2.10E-03	2.10E-03 lb/mmscf	×	2.00E-04	mmscf/hr	×			ıı	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	II	<0.01	ТРУ
Toluene	Toluene 3.40E-03 lb/mmscf	lb/mmscf	×	2.00E-04	2.00E-04 mmscf/hr	×			ш	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	II	<0.01	ТРУ
Other HAP	1.90E-03	lb/mmscf	×	2.00E-04	mmscf/hr	×			ш	<0.01	b/hr	×	8,760	×	0.0005	ton/lb	II	<0.01	ТРУ
co	CO ₂ 5.31E+01 kg/mmBtu	kg/mmBtu	×	2.05E-01	mmBtu/hr	×	2.20462	lb/kg	=	24 00	lb/hr	×	8,760	×	0.0005	ton/lb	=	105.14	ТРҮ
CH4 CH4	CH ₄ 1.00E-03 kg/mmBtu	kg/mmBtu	×	2.05E-01	2.05E-01 mmBtu/hr	×	2.20462	lb/kg	=	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	=	<0.01	ТРҮ
N ₂ O	N ₂ O 1.00E-04 kg/mmBtu	kg/mmBtu	×	2.05E-01	mmBtu/hr	×	2.20462	lb/kg	11	<0.01	lb/hr	×	8,760	×	0.0005	ton/lb	п	<0.01	ТРҮ

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Flare Emissions Calculations - Flare Stream Analysis

CC-FL-3 Unit ID:

		Ctucom 1	,							
	•	Compressor	Compressor Blowdowns		Total Stre	Total Streams Burned in Flare	d in Flare		Net Heating	
Component	Molecular Weight	1.89E+03	scfh	Uncon	Uncontrolled	scfd	Controlled	olled	Value	Net Btu Rate
		Wole %	lb/hr	lb/hr	ТРҮ		lb/hr	ТРҮ	Btu/scf	Btu/hr
Water	18.0153	%000'0	00.0	00.0	00'0	0	00'0	00'0	00'0	0
Hydrogen Sulfide	34.081	%000.0	<0.01	<0.01	<0.01	0	<0.01	<0.01	586.80	~
Carbon Dioxide	44.010	1.061%	2.33	2.33	0.70	481	2.33	0.70	00:00	0
Nitrogen	28.013	3.032%	4.23	4.23	1.27	1,374	4.23	1.27	0.00	0
Helium	4.003	%000.0	00.00	00.00	00.00	0	00.00	00.0	00 [:] 0	0
Oxygen	31.999	%000.0	00'0	00.00	00'0	0	00.00	00.0	00.0	0
Methane	16.043	64.603%	51.60	51.60	15.48	29,289	1.03	0.31	909.40	1,109,790
Ethane	30.069	19.548%	29.27	29.27	8.78	8,862	0.59	0.18	1,618.70	597,727
Propane	44.096	8.243%	18.10	18.10	5.43	3,737	0.36	0.11	2,314.90	360,458
i-Butane	58 122	0.757%	2.19	2.19	99'0	343	0.04	0.01	3,000.40	42,905
n-Butane	58.122	2.029%	28'5	2.87	1.76	920	0.12	0.04	3,010.80	115,369
i-Pentane	72.149	0.245%	88'0	0.88	0.26	111	0.02	0.01	3,699.00	17,091
n-Pentane	72.149	0.320%	1.15	1.15	0.35	145	0.02	0.01	3,706.90	22,421
n-Hexane	86.175	0.024%	0.10	0.10	0.03	11	<0.01	<0.01	4,403.80	1,997
Other Hexanes	86.175	0.104%	0.44	0.44	0.13	47	0.01	<0.01	4,403.80	8,610
Heptanes	100.202	0.011%	90'0	90.0	0.02	2	<0.01	<0.01	5,100.00	1,069
Benzene	78.114	0.005%	0.02	0.02	0.01	2	<0.01	<0.01	3,590.90	360
Toluene	92.141	0.005%	0.02	0.02	0.01	2	<0.01	<0.01	4,273.60	371
Ethylbenzene	106 167	0.000%	<0.01	<0.01	<0.01	0	<0.01	<0.01	4,970.50	19
Xylenes	106.167	0.001%	0.01	0.01	<0.01	-	<0.01	<0.01	4,957.10	112
Octanes	114.229	0.008%	0.04	0.04	0.01	4	<0.01	<0.01	5,796.00	854
2,2,4-Trimethylpentane	114.231	0.004%	0.02	0.02	0.01	2	<0.01	<0.01	5,778.80	469
Nonanes	128.255	%0000	00'0	00.00	00'0	0	00.00	00.0	6,493.20	0
Decanes	142.282	0.000%	00'0	00.00	00'0	0	00.00	00.0	7,189.60	0
	Totals =	100.000%	116.33	116.33	34.90	45,336	-		:	2,279,624
	Total VOC =	11.755%	28.91	28.91	8.67	-	0.58	0.17	Ucot Wolus	
			Total HAP =	0.18	90'0		<0.01	<0.01	neat value	1,207
			Total H ₂ S=	<0.01	<0.01	-	<0.01	<0.01	(Democi)	
					MW of Stream =	23.36				

Notes: 1) Stream composition assumed to be inlet gas. Estimated 300 compressor blowdowns at 1.889 MCF and one hour each.

ONEOK Rockies Midstream, L.L.C. Corral Creek Compressor Station Miscellaneous Venting and Blowdowns to Atmosphere

		Stream 1	Emis	-:
	Molecular	Inlet Gas	Emis	Sions
Component	Weight	Mole %	scf/yr ¹	TPY ²
Hydrogen Sulfide	34.081	0.000%	2	<0.01
Carbon Dioxide	44.010	1.061%	15,920	0.92
Nitrogen	28.013	3.032%	45,477	1.68
Helium	4.003	0.000%	0	0.00
Oxygen	31.999	0.000%	0	0.00
Methane	16.043	64.603%	969,048	20.49
Ethane	30.069	19.548%	293,222	11.62
Propane	44.096	8.243%	123,647	7.19
i-Butane	58.122	0.757%	11,355	0.87
n-Butane	58.122	2.029%	30,428	2.33
i-Pentane	72.149	0.245%	3,669	0.35
n-Pentane	72.149	0.320%	4,803	0.46
n-Hexane	86.175	0.024%	360	0.04
Other Hexanes	86.175	0.104%	1,553	0.18
Heptanes	100.202	0.011%	167	0.02
Benzene	78.114	0.005%	80	0.01
Toluene	92.141	0.005%	69	0.01
Ethylbenzene	106.167	0.000%	3	<0.01
Xylenes	106.167	0.001%	18	<0.01
Octanes	114.229	0.008%	117	0.02
2,2,4-Trimethylpentane	114.231	0.004%	65	0.01
Nonanes	128.255	0.000%	0	0.00
Decanes	142.282	0.000%	0	0.00
	Totals =	100.000%	1,499,999	46.19
		Total VOC =	176,331	11.48
		Total HAP =	594	0.07

Estimated Annual Volume 1,500,000 scf/yr Molar volume conversion @60° F and 1 atm: 1 lb/mole = 379.4 scf

Notes

- 1) Calculated as follows: Total Losses scf/yr * mol% of component.
- 2) Calculated as follows: component scf/yr / 379.4 molar volume conversion * MW component / 2000 lb/ton.

Appendix C – Support Documents

Inlet Gas Sample

Meter Sample and Analysis

January 2025

Type:

Sample Date:

Meter #: 610012167

Name: CORRAL CREEK DISCHARGE

ORM_DAILY_TECH_10

Meter Analysis Effective Date: 1/6/2025 0:00:00 1/6/2025 7:00:00 Meter Analysis Effective End Date:

Sample

Analysis

Gas Chromatograph

1/6/2025 15:06:00

SPL **Company Name:**

Spot Sample - Other

Analyzer Type: 1/6/2025 15:06:00 Analysis Date:

> Make & Model: Inficion Fusion Calibration Date: 1/6/2025 0:00:00 Austin Olson Analysis Tech:

SPL

N/A **Bottle Cleaned:** 25388.7 Flow Rate: 813.1 psia Pressure:

Temperature: 88.1 Ambient Air Temp.: 11.0 **Heat Trace Indicator:** Yes

Austin Olson Sample Tech:

C6+: 60 - 30 - 10

Lab Name:

Component	Mole %	Liquid Content	Mass %	Property	Total Sample
Carbon Dioxide (CO2)	1.0613		1.9985	Pressure Base	14.730
Nitrogen (N2)	3.0318		3.6341	Temperature Base	60.00
Methane (C1)	64.6032		44.3462	Relative Density	0.8101
Ethane (C2)	19.5481	5.2492	25.1508	HV, Dry @ Base P,T	1336.39
Propane (C3)	8.2431	2.2802	15.5530	Ideal Heating Value:	1330.64
Isobutane (IC4)	0.7570	0.2487	1.8826	HV, Sat @ Base P,T	1313.13
n-Butane (NC4)	2.0285	0.6421	5.0448	HV, Sat @ Sample P,T	
Isopentane (IC5)	0.2446	0.0898	0.7551	Fws Factor	
n-Pentane (NC5)	0.3202	0.1165	0.9885	Cricondentherm	
Hexanes Plus (C6+) Argon (Ar)	0.1621	0.0710	0.6463	HCDP @ Sample Pressure	79.162
Carbon Monoxide (CO)				Testcar Permian	0.657
Hydrogen (H2)				Testcar Panhandle	0.613
Oxygen (O2)				26 # RVP Gasoline	0.399
Helium (He)				Testcar Midcon	0.537
Water (H2O)				Free Water	
Hydrogen Sulfide (H2S)	0.0001		0.0001	Stock Tank Condensate Bbl/MMscf	
Total:	100.0000	8.6975	100.0000		

100.6886 **Un-Normalized Total:**